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SUMMARY

Di!erent methods for estimating the e!ect of treatment actually received in a longitudinal placebo-
controlled trial with non-compliance are discussed. Total mortality from the ATBC Study is used as an
illustrative example. In the ATBC Study some 25 per cent of the participants dropped out from active
follow-up prior to the scheduled end of the study. The &intention-to-treat' analysis showed an increased
death risk in the beta-carotene arm when compared with the no beta-carotene arm. Owing to considerable
non-compliance it is also of interest to estimate the e!ect of beta-carotene actually received. We use a simple
model for the treatment action and discuss three methods for estimation of the treatment e!ect under the
model } the &intention-to-treat' approach, the &as-treated' approach and the g-estimation approach. These
approaches are compared in a simulation study under di!erent settings for non-compliance. Finally, the
data from the ATBC Study are analysed using the proposed methods. Copyright ( 1999 John Wiley
& Sons, Ltd.

1. INTRODUCTION

In population based randomized chemoprevention studies, complete endpoint information on
death is obtained from national registers for all participants. The primary analysis is based on the
&intention-to-treat' (ITT) comparison, that is, survival comparison of the treatment groups as
randomized, regardless of subsequent adherence to the treatment protocol. By virtue of random-
ization the ITT comparison provides a valid test for the sharp causal null hypothesis of no
treatment e!ect. However, prior to the scheduled end of follow-up a substantial number of



participants &drop out', that is, they cease to attend clinic visits and thus cease to receive
supplementation. Assessment of the magnitude of the e!ect of &treatment actually received' is
complicated by the fact that those who drop out prematurely may di!er from compliers on
important time constant and time varying risk factors, some of which may be unobserved.
We assume that various demographic and life-style characteristics known to be predictive of
both treatment-free survival and the time on active treatment are measured at baseline, but we do
not assume that the full set of such factors has been captured. Here we restrict attention to time con-
stant baseline covariates and do not deal with observed or unobserved time varying confounders.

Our interest stems from the Alpha-Tocopherol Beta Carotene Lung Cancer Prevention Study
(ATBC Study), a randomized placebo controlled prevention trial designed to assess the e!ect
of alpha-tocopherol and beta-carotene supplementation on lung cancer incidence in a cohort of
29,113 smoking middle aged men in Finland.1 The ITT analysis suggests a harmful e!ect of
beta-carotene supplementation on lung cancer incidence and mortality.2 Since about 25 per cent
withdrew from active treatment prematurely for reasons other than death it is of interest also to
assess the e!ect of beta-carotene actually received. We introduce for each individual the concept
of treatment-free survival time which is a potential outcome. We assume that each day on active
treatment induces an independent increment * to the survival time. For positive * the survival
time is prolonged (protective e!ect) and for negative * it is contracted (harmful e!ect). The data
observed for a given individual are determined by the treatment arm assignment and by censoring
due to the scheduled end of follow-up. It is the structural parameter * that is of interest, and we
discuss complications that may arise as well as assumptions that need to be made to identify
* from the observed data.

The treatment-free survival time di!ers between individuals and can be viewed as a random
intercept or error term in the structural model. Initially we make the rather arti"cial assumption
that the potential treatment-free survival time and the potential time on active treatment vary
independently of each other in the cohort. We introduce a transformation of the potential
variables to observed variables and we describe under what conditions a multiplicative hazards
model with a time dependent indicator for the active treatment captures the structural parameter
*. We proceed by replacing the assumption of independence by the complication of outcome
dependent drop-out. We attempt to retrieve the structural parameter * using three alternative
approaches. (i) ITT analysis; (ii) &as-treated' (AT) analysis; and (iii) so-called g-estimation (GE
analysis). Since our focus is on estimating the magnitude of the e!ect of treatment actually
received on survival, the ITT approach is known to give estimates that are biased towards the null
when non-compliance is present. We show that the AT analysis gives valid estimates if the
potential time on active treatment is independent of treatment-free survival, and if the treatment-
free survival time follows an exponential distribution. Both the ITT and AT methods fail if the
potential time on active treatment depends on the treatment-free survival time. We can estimate
the parameter in the structural model using g-estimation, which has connections to the use of
instrumental variables in econometrics,3 and was originally introduced by Robins.4 It draws on
the independence between the potential treatment-free survival and the treatment arm allocation.
Here we expand on work by Mark and Robins5 by explicitly considering the performance of the
di!erent methods under outcome dependent non-compliance.

In Section 2 we brie#y present the ATBC Study. In Section 3 we describe the observed data and
the structural model together with the central assumptions on how treatment a!ects outcome. In
Sections 4, 5 and 6, respectively, we present the ITT, AT and GE methods including their
strengths and weaknesses in capturing the structural model parameter. In Section 7 we present
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a simulation study under di!erent compliance settings. In Section 8 we analyse the ATBC Study
data on beta-carotene supplementation and total mortality and in Section 9 we discuss how the
proposed methods relate to the existing literature and how the simple deterministic structural
model could be extended to more realistic situations involving di!erential treatment action.

2. THE ATBC STUDY

The rationale, design, measures of compliance and characteristics of the participants of the
alpha-tocopherol beta-carotene (ATBC) study have been described in detail elsewhere.1 Brie#y,
this was a randomized double-blinded placebo-controlled chemoprevention trial conducted in 14
adjoining areas in Finland between 1985 and 1993. The primary objective was to evaluate the
e!ects of alpha-tocopherol and beta-carotene supplementations on lung cancer incidence in
a cohort of 29,133 smoking middle aged men at high risk for lung cancer. Secondary objectives
were to evaluate the e!ect of supplementation on the incidence of other major cancers and on
total mortality.

Participants were recruited from each of the 14 areas between 1985 and 1988. The date of
scheduled end of active intervention was 30 April 1993 for all participants. The median follow-up
time was about 6 years. Within each area a 2]2 factorial scheme was used to randomize the
participants to one of the four possible treatments, alpha-tocopherol alone, beta-carotene alone,
their combination, or placebo. At baseline participants were interviewed to obtain details of
demographic variables, as well as medical, smoking, dietary and occupational history. Levels of
alpha-tocopherol and beta-carotene in serum were also measured from blood samples drawn at
baseline. Follow-up consisted of three annual visits to the local "eld centre, during which the men
were asked about their health status and smoking habits since the last visit. During the follow-up
visits the study treatment from the previous period were returned, residual capsules were counted
and recorded, and a new pack of supplements with a 4-month supply was given to each
participant. If the participants stopped attending follow-up visits they could no longer get the
study agents and were considered drop-outs. Endpoint information was received from national
registers regardless of the drop-out status. Speci"cally, cancers were identi"ed primarily via the
Finnish Cancer Registry and deaths were con"rmed via the Central Population Register.

In this paper we focus on analysing the e!ect of beta-carotene supplementation on total
mortality. We compare the beta-carotene group (BC) with the no beta-carotene (NOBC) group.
Note that the BC group includes the combination treatment as well as the beta-carotene
treatment alone. Similarly, the NOBC group includes placebo treatment and alpha-tocopherol
treatment alone. The ITT analysis suggested a harmful e!ect of beta-carotene supplementation
on total mortality.2 Since about 25 per cent withdrew from active treatment prematurely for
reasons other than death (Table IV) it is of interest also to assess the e!ect of beta-carotene
actually received. We will contrast the ITT analysis, the AT analysis and the GE analysis using
the ATBC study as an example in Section 8.

3. DATA AND THE MODEL

3.1. Observed data

We present a general notation for a randomized clinical trial with non-compliance. We assume
staggered entry into the trial and a "xed closing date. Each individual is followed from the time of
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randomization to death or to the closing date, whichever comes "rst. Thus the censoring time is
"xed for each individual before allocation to the treatment arm.

For subject i we observe a set of baseline covariates, Z
i
, which include age, smoking history and

other physiological or life-style factors assumed related to the endpoint. The treatment assign-
ment indicator is denoted by R

i
and takes the value 0 if allocated to placebo and 1 if allocated to

active treatment. ¹
i

is the time to death and C
i

is the censoring time, that is, time from
randomization to the closing date. We can only observe X

i
"min (¹

i
, C

i
) with d

i
"1 if X

i
"¹

i
,

that is, if death occurs before the closing date, and d
i
"0 otherwise. The time on active treatment

is denoted by D
i
. In the placebo arm D

i
"0, for all i, implying that the treatment agent is not

available outside the study setting. In the active treatment arm D
i
)X

i
and we call subject

i a complier if D
i
"X

i
and a non-complier otherwise. We assume monotone drop-out, that is,

once a subject has dropped out he cannot re-enter to receive the active treatment. Note, that
drop-out in the placebo arm is ignored, since it is not assumed to carry information relevant for
compliance in the treated arm. Thus for subject i the observed data are MZ

i
, R

i
, X

i
, d

i
, D

i
N.

3.2. The structural model

For subject i we de"ne ;
i
as the potential survival time had no treatment been received. In the

ATBC Study ;
i
denotes the survival time if no beta-carotene was received. For a given time on

active treatment D
i

we link the treatment-free survival time ;
i

to survival time ¹
i

through
a structural model

¹
i
";

i
#*D

i
(1)

with D
i
)¹

i
and !R(*(1 and where D

i
and ;

i
are possibly correlated. Model (1)

quanti"es how treatment-free survival time is extended or contracted if subject i spends D
i
time

units on active treatment. Note that;
i
is de"ned for each individual at the time of randomization

and is treated as a potential outcome that is "xed at baseline but only partially observed. In the
absence of censoring we observe ¹

i
";

i
in the placebo arm because D

i
"0, but in the treatment

arm ;
i
is observed only if D

i
"0.

Model (1) corresponds to an accelerated failure time model (AFT) with a time varying covariate
process A

i
(t)"1 if subject i is on active treatment at time t and A

i
(t)"0 otherwise. For a "xed

* we write

;
i
(*)"P

Ti

0

exp(tA
i
(s)) ds"P

Di

0

exp(t )ds#P
Ti

Di

ds"D
i
exp(t)#(¹

i
!D

i
)"¹

i
!*D

i
(2)

with !R(t(R and !R(*"1!exp(t)(1. Robins and Tsiatis6 refer to this model as
a rank preserving structural nested failure time (RPSNFT) model and they interpret 1/(1!*) as
the fractional increase or decrease in survival time if subject i were always on active treatment as
opposed to never being on active treatment. Thus if *"0)5 the remaining lifetime is doubled if
always on active treatment and if *"!1 it is halved if always treated as compared to never
treated.

3.3. Assumptions

We make four assumptions, which are in line with those for the instrumental variables approach
in linear models where the error process is correlated with the covariate process.3
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Assumption 1. Model (1) correctly captures the biological treatment action.
Assumption 2. Randomization takes place at baseline and the assignment mechanism is
known. The simplest case involves Pr(R

i
"1)"Pr(R

i
"0)"1

2
.

Assumption 3. The treatment-free survival time ;
i
for an individual i is una!ected by the

treatment assignment or by the survival experience of other individuals.
Assumption 4. The exclusion restriction holds, that is, no other factor than the amount of the
treatment received D

i
induces a di!erence in survival experience for an individual i under

di!erent treatment arm assignments. This assumption is plausible if the study is appropriately
blinded.

In what follows we discuss three methods for estimating the structural parameter in the
model (1).

4. THE &INTENTION-TO-TREAT' (ITT) ANALYSIS

In the &intention-to-treat' analysis the treatment groups are compared as assigned regardless of
non-compliance. The simplest standard analysis for assessing treatment e!ect is randomized trials
with a survival endpoint, possibly non-informatively right censored, in to assume that the
proportional hazards assumption holds, that is

j
i
(t)"j

0
(t) exp (t

H
R

i
) (3)

where j
0
(t) is the baseline hazard and exp (t

H
) the risk ratio parameter. Estimation of the

parameter t
H

based on the partial likelihood was introduced by Cox7 and large sample
properties of the estimate were justi"ed using martingale theory by Andersen and Gill.8 The
logrank test, which is equivalent to the partial likelihood score test, can be used for testing of the
sharp causal null hypothesis of no treatment e!ect, that is, H

0
:t

H
"0.

If all subjects adhere to their original treatment assignment throughout the study, that is,
A

i
(t)"R

i
for all t, then from (2) ¹

i
";

i
exp(!tR

i
) and after taking logarithms of both sides we

get the ITT accelerated failure time model

log (¹
i
)"!t

A
R

i
#log(;

i
). (4)

Correspondingly, if D
i
"¹

i
in the treated arm and D

i
"0 in the placebo arm, then (1) gives

log (¹
i
)"!log(1!*)]R

i
#log(;

i
). (5)

The proportional hazards model with the parameter t
H

from (3) and the accelerated failure time
model with the parameter t

A
from (4) are alternatives for assessing the ITT e!ect. If ;

i
follows

a Weibull distribution then model (4) is a Weibull regression model and it
A
"t

H
where i is the

index parameter of the Weibull distribution.9 We write *
H
"1!exp(t

H
) and *

A
"1!exp(t

A
)

for the structural parameters corresponding to (3) and (4). The equivalence of (4) and (5) under full
compliance motivates *

A
. The equivalence of (3) and (4) under the Weibull model motivates *

H
.

In a non-Weibull case *
H

does not have direct interpretation in terms of *. Under full compliance
the parameter * may be consistently estimated by *)

A
either parametrically or semi-paramet-

rically, but by *)
H

only under the Weibull model. Under non-compliance all estimates will be
attenuated relative to *.
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5. THE &AS-TREATED' (AT) ANALYSIS

A naive approach to estimating the incremental e!ect of treatment received is to use a time
varying indicator A

i
(t) for being on active treatment at time t in the proportional hazards model

j
i
(t)"j

0
(t) exp (t

AT
A

i
(t) ). (6)

Partial likelihood estimation of the risk ratio parameter exp(t
AT

) is straightforward.
We show in the Appendix that * can be estimated by the partial likelihood estimate

*)
AT

"1!exp(t)
AT

) with a weakly consistent and asymptotically unbiased estimate t)
AT

from
model (6) if (i) the treatment-free survival time ;

i
and the potential time on active treatment

D*
i

(de"ned in the Appendix) vary independently of each other in the population and (ii);
i
has an

exponential distribution. The rationale for the argument is that based on model (1) and assump-
tion (i) the hazard at time t conditional on the event IMD

i
(tN is shown to have the general form

j
T DD

(t Dd)"G
j
U
(t!*d)

(1!*)j
U
(t!*t)

for those who have dropped out by time t

for those still on active treatment at time t
(7)

with j
U
(t) the hazard function for treatment-free survival ;. If assumption (ii) holds, that is, if

j
U
(t)"j

u
for all t'0, then 1!* is retrieved from a proportional hazards model of the form (6)

(see Appendix).
Expression (7) holds also when D*

i
is conditionally independent of ;

i
for a given linear

combination of the covariates Z
i

provided this linear combination is also included as an
additional term in the hazard model (6). The linear combination in Z

i
can be viewed as

a propensity score.10 In general, however, we cannot fully expect to capture the dependence
between potential treatment-free survival and time on active treatment by conditioning on Z

i
, in

which case ;
i
o/ D*

i
D Z

i
and the AT approach will give biased results.

6. THE G-ESTIMATION (GE) ANALYSIS

Randomization guarantees that any variable measured at baseline will on average be balanced
with respect to the treatment assignment. In particular, ;

i
D D
*

R
i
, that is, Pr(;

i
*x DR

i
"0)"

Pr(;
i
*x DR

i
"1) for all values of x*0. Thus, a procedure for estimating * can be based on

computing;
i
(*) from (1) for given *, and then using a test for equality of the distribution of the

treatment-free survival times between the two treatment arms. If the assumptions 1}4 in Section
3.3 are valid then;

i
(*) D D
*

R
i
at the true value *"*

0
. From a grid of values for * one chooses as

estimate *)
GE

the value for which the distribution of ;
i
(*) in the treated arm is in some sense

closest to the observed distribution of;
i
(*) in the placebo arm. One complication arises from the

fact that due to censoring;
i
(*) cannot always be computed from the observed data using model

(1). In the next section we describe a new censoring variable C
i
(*) and new observations

MX
i
(*), d

i
(*)N which can be computed, and for which MX

i
(*), d

i
(*)N D D
*

R
i

at the true value
*"*

0
. Treating the pair MX

i
(*), d

i
(*)N as the failure time and the censoring indicator we use the

logrank test as a measure of equality for the distribution of the treatment-free survival in the two
randomized arms. We write the logrank test statistic as G(*) which has an asymptotic standard
normal distribution under *"*

0
.6 In principle, a point estimate for * could be obtained by

solving G(*)"0 for *, and approximate test-based 100(1!a) con"dence intervals could be
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Table I. Illustration of *-censoring in g-estimation (C
i
"4 in all cases)

* Subject Potential
variables Observed data Quantities in *-censoring
;

i
D*

i
R

i
D

i
X

i
d
i
;x

i
(*) C

i
(*) X

i
(*) d

i
(*)

0)5 1 3 6 0 0 3 1 3 2 2 0
0)5 1 3 6 1 4 4 0 2 2 2 0
0)5 2 2)25 1)5 0 0 2)25 1 2)25 2 2 0
0)5 2 2)25 1)5 1 1)5 3 1 2)25 2 2 0

!1 3 6 2)5 0 0 4 0 4 4 4 0
!1 3 6 2)5 1 2)5 3)5 1 6 4 4 0
!1 4 3)75 0)25 0 0 3)75 1 3)75 4 3)75 1
!1 4 3)75 0)25 1 0)25 3)5 1 3)75 4 3)75 1

found as the range where DG(*) D)Z1!a
2
, where Z

p
denotes the pth quantile of the normal

distribution. Since G(*) is based on ranks, however, it is a step function in * and G(*)"0 cannot
be solved exactly. Instead *)

GE
is computed as the value where G(*) changes its sign and

test-based con"dence intervals are found accordingly.6, 11

6.1. *-censoring

Censoring due to end of scheduled follow-up needs special care when using g-estimation. One
cannot simply replace ¹

i
by X

i
in model (1) can calculate the respective value for ;

i
for a "xed

* (denote this by ;x
i
(*)), because then for all *

0
O0 we have ;x

i
(*

0
) o/ R

i
and assumption 3 of

Section 3.3 is violated. Instead, we de"ne a new censoring time C
i
(*)"C

i
if *)0 and

C
i
(*)"C

i
(1!*) when 0(*(1. For given * we use X

i
(*)"min(;

i
(*), C

i
(*)) and

d
i
(*)"I (X

i
(*)";

i
(*) ) as the new follow-up time and censoring indicator. Both X

i
(*) and d

i
(*)

can be calculated from the observed data and at *"*
0

we have MX
i
(*), d

i
(*)N D D
*

R
i
and the

independence assumption 3 of Section 3.3 is restored. C
i
(*) can be interpreted as the maximum

;
i
(*) that can be calculated which is smaller than C

i
no matter how long individual i is on active

treatment. This way of dealing with censoring was introduced by Robins and Tsiatis.6
Table I gives four illustrative examples of *-censoring in g-estimation. In all cases the censoring

time C
i
is "xed to 4. The "rst four rows illustrate what can happen when treatment is bene"cial

(*'0) and the last four rows describe situations when treatment is harmful (*(0). For
illustration we show the potential quantities ;

i
and D*

i
(see Appendix) as well as the observed

data in Table I. In the "rst case (row 1) we would observe the treatment-free survival time
X

i
";

i
"3 if subject 1 was randomized to the placebo arm. In g-estimation his treatment-free

survival time will be censored because of C
i
(0)5)"2(;

i
and thus X

i
(0)5)"2. If the same

person was randomized to the active treatment arm (row 2), he would be on active treatment until
death at 6 which we cannot observe because the follow-up ends at 4. Instead we observe
D

i
"X

i
"C

i
"4. He is a complier and in g-estimation his treatment-free time is censored at 2.

Thus the distribution of X
i
(0)5) and d

i
(0)5) is independent of the treatment arm assignment. If we

calculate ;x
i
(0)5) for these two cases we observe that ;x

i
(0)5) D D
*

R
i

/ . The next two rows (3 and 4)
show that if treatment is bene"cial and time on active treatment is short enough, then some extra
censoring can happen also in the active treatment arm. Rows 5 and 6 show that when the
treatment is harmful then some extra censoring can occur in the active treatment arm but not in
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Table II. Illustration of g-estimation with a simple example (C
i
"4 in all cases)

Subject ;
i

Observed data *"!0)5 *"0 *"0)5
R

i
D

i
X

i
d
i

X
i
(*) d

i
(*) X

i
(*) d

i
(*) X

i
(*) d

i
(*)

1 5 1 4 4 0 4 0 4 0 2 0
2 4 1 4 4 0 4 0 4 0 2 0
3 3 1 2 4 1 4 0 4 1 2 0
4 2 1 1 2)5 1 3 1 2)5 1 2 1
5 1 1 0 1 1 1 1 1 1 1 1
6 5 0 0 4 0 4 0 4 0 2 0
7 4 0 0 4 1 4 1 4 1 2 0
8 3 0 0 3 1 3 1 3 1 2 0
9 2 0 0 2 1 2 1 2 1 2 1

10 1 0 0 1 1 1 1 1 1 1 1

G(!0)5)"1)065 G(0)"0)369 G(0)5)"0

the placebo arm. In this case ;x
i
(!1) D D

*
R

i
/ but X

i
(!1) D D

*
R

i
. Whether treatment-free survival

time is censored depends on the time spent on active treatment. Contrasting rows 6 and 8 we see
that if time on active treatment is short enough then the treatment-free survival time will not be
censored.

The general rule is that the survival times are censored on the U-scale in g-estimation when

*D
i
(¹

i
!(1!*)C

i
if 0(*(1

*D
i
(¹

i
!C

i
if *(0.

If *"0 then the censoring status remains the same on the U-scale in g-estimation.

6.2. Illustrative example of GE-analysis

We illustrate the g-estimation procedure using a simple example. Table II gives hypothetical data
for 10 subjects, "ve randomized to active treatment and "ve to placebo, respectively. The second
column of Table II shows that the distribution of treatment-free survival time;

i
is balanced with

respect to treatment assignment. The observed data are given in columns 3 to 6. Subjects in the
placebo arm do not receive the active treatment (D

i
"0). Subjects in the active treatment arm

remain on active treatment the longer their treatment-free survival time. In this example the
censoring time is "xed to be 4 time units for each subject. Table II reports values of X

i
(*) and

d
i
(*) for three di!erent values of * and the value of G(*). We see that some additional censoring is

introduced in the active treatment arm when *"!0)5 and in both treatment arms when
*"0)5. In g-estimation we "nd *)

GE
"0)5 because G(*"0)5)"0.

7. SIMULATION STUDY

We compare the performance of the ITT, AT and GE approaches under di!erent settings for
non-compliance with emphasis on the case when there are unmeasured confounders at baseline
a!ecting both treatment-free survival time and time on active treatment. This extends the
simulations by Mark and Robins.5
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7.1. Simulation design

In the simulations we let the true treatment e!ect be either very harmful (*"!1), ine!ective
(*"0) or very bene"cial (*"0)5). Censoring time is "xed to 6 and the overall death rate in the
placebo group is about 25 per cent. The overall drop-out rate in the active treatment group is set
to either 0 per cent, 35 per cent or 50 per cent. We induce dependence by letting the treatment-free
survival time and the potential time on active treatment depend on the same unmeasured
confounder. In the simulation scheme described in detail below the overall death rate is
controlled by the parameter b

0
, the overall drop-out rate by the parameter h

0
and the dependence

between treatment-free survival and time on active treatment by the parameters b
1

and h
1
. The

parameter b
0

is set to log (0)05) which corresponds to 25 per cent death rate in the placebo arm.
The parameter h

0
is set to either !20, log (0)07) or log (0)12) which correspond to 0 per cent, 35

per cent and 50 per cent drop-out rate in the active treatment arm, respectively. We set
b
1
"h

1
"1 to let treatment-free survival time depend on the time on active treatment (outcome

dependent case) and b
1
"h

1
"0 to have independence (independence case). For all 18 possible

combinations of the parameters we simulate a set of 1000 observations using the following
scheme and we repeat the simulations 500 times:

1. Fix C
i
"6 for all i"1,2, 1000.

2. Draw Z
i1
&N(0, 1) and R

i
&Bernoulli (1

2
). De"ne Z

i
"(1, Z

i1
)T.

3. Draw ;
i
using a linear transformation model12

log (;)"!ZTb#e (8)

with b"(b
0
,b

1
)T and e from the extreme value distribution with distribution function

P (e)x)"1!e~%x.
4. Draw D*

i
using model (8) with b"(h

0
, h

1
)T.

5. If R
i
"1 set D

i
"minAD*

i
,
;

i
1!*B and if R

i
"0 set D

i
"0.

6. Calculate ¹
i
from the structural model (1).

7. Set X
i
"min(¹

i
,C

i
), d

i
"I (X

i
"¹

i
) and D

i
"min (D

i
, X

i
).

Note that the draws from the linear transformation model (8) are here exponentially distributed
with rate parameter exp (ZTb). The covariate Z

i1
operates as a predictor for both;

i
and D*

i
, thus

causing dependence. Information on Z
i1

is not used in any analysis.

7.2. Computation

The ITT and AT analyses are readily done using any survival analysis software. G-estimation
involves "nding the value of * for which the logrank test statistic is zero based on the data
MX

i
(*), d

i
(*), R

i
N as de"ned in Section 6.1. A root "nding procedure may be used such as the

uniroot function in S-plus.13 All the calculations are done using S-plus version 3.4 Release 1 for
a Sun SPARC (SunOS 5.3) computer.

7.3. Results

From each of the 18 simulations, we report in Table III the distribution for the estimated
parameters over the 500 repetitions, their mean squared error (MSE), the median length of the 95
per cent con"dence interval (CI), the proportion of hits in the 95 per cent CI, that is, how many
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Table III. Results of the simulation study for ITT, AT and GE methods

Non-compliance setting ITT AT GE

MSE CI Hits Power MSE CI Hits Power MSE CI Hits Power

Independence case
*"0)5, h

0
"!20 0)006 0)298 95)0 100)0 0)006 0)298 95)0 100)0 0)008 0)333 94)8 100)0

*"0)5, h
0
"log(0)07) 0)014 0)331 80)2 97)8 0)006 0)313 94)0 99)8 0)010 0)408 95)6 98)0

*"0)5, h
0
"log(0)12) 0)027 0)352 58)6 92)6 0)006 0)326 96)4 99)6 0)014 0)471 95)0 92)8

*"0, h
0
"!20 0)016 0)497 95)6 * 0)016 0)497 95)6 * 0)017 0)532 95)6 *

*"0, h
0
"log(0)07) 0)015 0)499 96)0 * 0)016 0)509 96)0 * 0)023 0)644 96)0 *

*"0, h
0
"log(0)12) 0)017 0)495 95)0 * 0)018 0)525 96)0 * 0)033 0)704 95)2 *

*"!1, h
0
"!20 0)047 0)883 95)6 100)0 0)047 0)883 95)6 100)0 0)065 1)027 96)6 100)0

*"!1, h
0
"log(0)07) 0)065 0)815 86)8 100)0 0)047 0)885 95)8 100)0 0)073 1)138 95)0 100)0

*"!1, h
0
"log(0)12) 0)111 0)773 72)0 100)0 0)052 0)899 96)4 100)0 0)088 1)215 97)4 100)0

Outcome dependent case
*"0)5, h

0
"!20 0)009 0)286 84)8 99)8 0)009 0)286 84)8 99)8 0)008 0)325 95)0 99)8

*"0)5, h
0
"log(0)07) 0)041 0)331 27)8 90)0 0)015 0)225 60)0 100)0 0)014 0)485 94)6 90)4

*"0)5, h
0
"log(0)12) 0)070 0)355 12)0 67)6 0)025 0)219 35)8 100)0 0)026 0)616 94)8 68)2

*"0, h
0
"!20 0)011 0)448 95)2 * 0)011 0)448 95)2 * 0)018 0)568 95)2 *

*"0, h
0
"log(0)07) 0)014 0)450 94)4 * 0)062 0)358 37)0 * 0)041 0)775 94)6 *

*"0, h
0
"log(0)12) 0)015 0)447 94)2 * 0)106 0)338 13)4 * 0)059 0)904 94)0 *

*"!1, h
0
"!20 0)093 0)709 74)0 100)0 0)093 0)709 74)0 100)0 0)077 1)105 93)0 100)0

*"!1, h
0
"log(0)07) 0)212 0)646 35)2 98)6 0)362 0)578 8)4 90)4 0)109 1)305 95)4 98)6

*"!1, h
0
"log(0)12) 0)277 0)622 18)2 97)2 0)509 0)546 2)0 69)8 0)148 1)478 95)0 97)2

2888
P

.A
.K

O
R

H
O

N
E

N
,N

.M
.
L

A
IR

D
A

N
D

J.P
A

L
M

G
R

E
N

C
o
p
yrigh

t
(

1999
Jo

h
n

W
iley

&
S
o
n
s,

L
td

.
S
tatist.M

ed.18,2879
}
2897

(1999)



Figure 1. Box-whisker plots of the distribution of estimated *@s for the di!erent methods compared under no outcome
dependent non-compliance (that is, b

1
"h

1
"0)

times in 100 cases the 95 per cent CI includes the true value of *, and the empirical power (Power)
for rejecting the null hypothesis *"0. The power is reported only for those cases where the true
treatment e!ect is not zero.

From Table III we see that the ITT approach performs well if the true treatment e!ect is null or
if there is no drop-out. It gives narrower con"dence intervals than AT or GE and also has proper
coverage. The bias of ITT can immediately be seen if *

0
O0 and if there is drop-out (that is,

h
0
O!20). The bias increases with the drop-out rate and is more pronounced with outcome

dependent drop-out, which can be seen from the incorrect proportion of hits within the 95 per
cent CI and from increased MSEs. If drop-out does not depend on the underlying treatment-free
survival time, then the AT approach performs well for all values of the true treatment e!ect and
the drop-out rate. AT has the correct coverage and MSE is low. With outcome dependent
drop-out AT fails completely even if *

0
"0 and h

0
O!20. Note that by de"nition ITT is the

same as AT if h
0
"!20. GE performs well in all situations. With outcome dependent drop-out

GE has correct coverage in all 9 settings. It has wider con"dence intervals throughout, which can
be understood from the fact that no likelihood is speci"ed and only the independence assumption
between;

i
and R

i
is used. The power of the methods decreases when drop-out increases. Here the

power is high because the treatment e!ects are large in magnitude and the overall death rate is
quite high. Note, however, that the powers for ITT and GE are about the same, re#ecting that
even though the GE approach uses non-compliance information it does not increase the power
against the null hypothesis when compared with the ITT approach. This re#ects the fact that the
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Figure 2. Box-whisker plots of the distribution of estimated *@s for the di!erent methods compared under outcome
dependent non-compliance (that is, b

1
"h

1
"1)

GE test statistic and the ITT test statistics are algebraically equivalent at *"0. This robustness
of the ITT approach is useful and it indicates that for testing purposes the ITT approach is valid
even if it tends to underestimate the treatment e!ect.

Figures 1 and 2 show box-whisker plots of the distributions of the 500 estimated *'s under the
di!erent compliance settings. In Figure 1 we present the results from the independence case and
Figure 2 shows the outcome dependent drop-out case. The lowest panel has no drop-out
(h

0
"!20), the middle panel has drop-out around 35 per cent (h

0
"log (0)07)) and the upper

panel has a high drop-out rate (h
0
"log (0)12)). The true treatment e!ect increases from left to

right with values *
0
"!1, 0 and 0)5. Dashed lines indicate the true value of the treatment e!ect

used for the respective panels. The distributions of the estimated parameters seem to be left-tailed
which is due to the restriction *(1. Figure 1 shows that when drop-out is independent of
outcome the empirical distribution of the estimated parameter is centred around the true value
for AT and GE, but for ITT only in the case of no drop-out at all (lowest panel) or when there is
no treatment e!ect. With outcome dependent drop-out (Figure 2) the attenuation of the estimated
ITT e!ect is shown also when drop-out is absent, because treatment-free survival time and thus
the observed survival time depends on an unmeasured confounder, which can be thought as
a frailty term causing attenuation. The GE approach can cope with baseline unmeasured
confounders because their distributions should be independent of the treatment assignment.

For completeness we repeated steps 1 to 7 of the simulation design in the non-Weibull case with
*"!1, b

0
"log (0)05), h

0
"log (0)07) and either b

1
"h

1
"0 or b

1
"h

1
"1. We used the
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Table IV. Drop-outs, deaths and person years accounted for active follow-up
and total follow-up in the BC and NOBC groups of the ATBC Study

Group N Drop-outs Deaths Active Total
follow-up* follow-up*

NOBC 14573 3642 1718 72188 85018
BC 14560 3703 1853 71888 84714

* Person years

standard logistic distribution for e in (8) instead of the extreme value distribution implying
a log-logistic model for ; and D instead of a Weibull model. For the independence case the
proportions of hits within the 95 per cent CI for ITT, AT and GE were 68)6, 85)6, and 96)0,
respectively. The bias of AT in the independence case can thus be seen if ; is not from a Weibull
distribution. For the outcome dependent drop-out the respective percentages were 34)6, 19)0
and 95)0.

8. BETA-CAROTENE AND TOTAL MORTALITY IN THE ATBC STUDY

We present the ITT, AT and GE analysis for data on all cause mortality from the ATBC Study.
The design and the main results of the study have been described elsewhere.1,2 We only consider
estimation of the magnitude of the e!ect of beta-carotene actually received on total mortality. We
compare the beta-carotene group (BC) with the no beta-carotene (NOBC) group. For each
participant we know the censoring time at the time of randomization. The median follow-up time
was about 6 years. Table IV gives a summary of the number of drop-outs and deaths and person
years for the two groups. Premature drop-out was de"ned as stopping clinic visits and being alive
120 days after the last attended visit. The drop-out rate was similar in the groups and out of
14,560 participants in the BC arm, 3703 withdrew from the study prematurely for reasons other
than death. Compliance, estimated on the basis of residual capsule counts, was excellent while on
the study.1 Some 88 per cent of the participants took over 90 per cent of their prescribed capsules
during active participation and only 4 per cent were poor compliers in this respect. The estimated
overall capsule consumption was 93 per cent. Therefore, we have de"ned exposure to beta-
carotene for simpli"city as the number of days from randomization to the time of drop-out in the
BC group. With this de"nition participants in the BC group received beta-carotene supplementa-
tion 84)9 per cent of their total time in the study (Table IV). The remaining 15)1 per cent is
accounted for by the time after drop-out in the BC group. Thus, non-compliance is a relevant
issue to address. With the above de"nition for drop-out D

i
denotes the drop-out time which is set

to zero in the NOBC group. D
i
measures the total exposure to the beta-carotene supplementation

during the study. For the AT approach A
i
(t)"1 if the participant in the BC group has not

dropped out by time t and A
i
(t)"0 otherwise.

Baseline age, number of cigarettes smoked daily, years smoked, alcohol consumption, place of
residence (urban/rural) and serum beta-carotene level were signi"cant predictors for the duration
of active treatment in the BC group (Table V). Baseline age, years smoked and serum
beta-carotene level were also signi"cant predictors for all cause mortality in the NOBC group
(Table V). Thus there is no doubt that non-compliance is related to the endpoint through
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Table V. Baseline predictors of mortality in the NOBC group and time on active treatment in the BC group

NOBC* BCs

RR (Lower and upper 95% CI)t RR (Lower and upper 95% CI)t

Age/10 years 2)46 (2)25, 2)69) 1)35 (1)27, 1)44)
Years smoked 1)06 (1)05, 1)07) 1)02 (1)09, 1)03)
No cigarettes 1)00 (0)99, 1)01) 1)01 (1)00, 1)02)
Place of residence 1)01 (0)91, 1)11) 1)13 (1)05, 1)21)
AlcoholA 1)04 (0)98, 1)09) 1)16 (1)13, 1)20)
Serum beta-carotene DD 0)83 (0)78, 0)89) 0)74 (0)70, 0)78)

* Mortality in the NOBC group
s Time on active treatment in the BC group
t Relative risk and con"dence intervals estimated from Cox's proportional hazards model
A Per one standard deviation (21)6 g/day)
DD Per one standard deviation (184 mmol/l)

Table VI. Estimated e!ects of beta-carotene supplementation on total mortality for the ITT, AT and GE
approaches

Estimation Estimate of * Relative survival time*
approach (lower and upper 95% CI) (lower and upper 95% CI)

ITT
Cox's model (*

H
) !0)083 (!0)157, !0)014) 0)92 (0)86, 0)99)

Weibull model (*
A
)s !0)062 (!0)112, !0)011) 0)94 (0)89, 0)99)

Semi-parametric AFT (*
A
)t !0)057 (!0)108, !0)010) 0)95 (0)90, 0)99)

AT (*
AT

)A 0)530 (0)494, 0)565) 2)13 (1)98, 2)30)
GE (*

GE
) !0)079 (!0)154, !0)012) 0)93 (0)87, 0)99)

* Expresses relative survival time in the BC group compared to the NOBC group, that is 1/(1!*)
s Index parameter estimated as i("1)28
t Estimated with the GE approach
A Relative risk adjusted for age, serum beta-carotene level and years smoked

measured baseline factors, but we do not exclude the possibility of other unmeasured baseline
confounders, and thus do not expect the AT analysis to give valid estimates.

8.1. ITT results

Table VI summarizes the results of the total mortality analysis with the di!erent approaches. The
ITT analysis suggested a harmful e!ect of beta-carotene supplementation on total mortality. The
relative risk estimate based on model (3) was 1)08 (95 per cent CI: 1)01 to 1)16), that is, 8 per cent
higher death rate in the BC arm. In Table VI we present results both on the *-scale and as relative
survival (1!*)~1. The naive AT relative risk estimate when conditioning on baseline age, years
smoked and serum beta-carotene level was 0)53. The apparent lower risk in the beta-carotene arm
is an artefact due to the deaths being moved from the beta-carotene arm to the placebo arm at the
time of drop-out. There is clearly residual dependence between drop-out and survival time even
after conditioning on baseline factors, and the AT analysis is totally inappropriate here. We
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Figure 3. G-estimation analysis of total mortality in the ATBC Study. Results shown using scale log(1!*)

analysed the ITT data also using an accelerated failure time model (4) which was de"ned by
setting D

i
"min(¹

i
,C

i
) in the BC arm and D

i
"0 in the NOBC arm. The semi-parametric

accelerated failure time ITT estimate (estimated using g-estimation) based on (4) suggest that
survival time in the BC group is some 5)4 per cent shorter compared with the NOBC group.
A parametric Weibull model yielded a similar e!ect of 5)9 per cent. The estimated index
parameter was i(K1)28. We note that the ITT e!ects from a Cox model and from an AFT model
are only comparable under a Weibull model. If the underlying true distribution for ;

i
, was

Weibull, then the three estimated parameters would be approximately equal with
1/(1!*)

H
)"1/(1!*)

A
)i( . Using the Weibull *)

A
we have 1/(1!*)

A
)i(K0)925, which is close to

the estimated e!ect from the Cox proportional hazards model (3).

8.2. GE results

The magnitude of the e!ect of beta-carotene actually received assessed by the GE analysis showed
that the survival time would be some 7)4 per cent shorter for a subject always on beta-carotene
supplementation as opposed to never being on beta-carotene supplementation (Table VI). In the
BC group 136 observed deaths were censored due to g-estimation and none in the NOBC group.
For illustration of the GE approach we present in Figure 3 values of G(*) plotted against
log(1!*). The curve seems quite smooth which is due to the large number of deaths and
participants in the study. With fewer events the curve would look more like a step function.

If the assumptions of Section 3.3 are valid then ;
i
(*

0
) should be independent of any function

involving R
i
. Speci"cally, ;

i
(*

0
) D D
*

R
i
DZ

i
and thus E (G (*

0
) DZ

i
)"0 for all values of Z

i
. An

informal diagnostic check would be to assess whether G (*)
GE

)"0 for di!erent strata formed from
the baseline variables, Z

i
, when *)

GE
is the estimated value of the overall structural parameter.

Large absolute values of G(*)
GE

) within some strata would indicate that the structural model is
incorrectly speci"ed. A corresponding graphical procedure would be to plot the strati"ed
Kaplan}Meier curves for both treatment arms for di!erent strata of Z

i
using data MX

i
(*)

GE
),

d
i
(*)

GE
) N. If the structural model is correct we would expect the curves to be identical at *"*

0
within each stratum. We performed a sensitivity analysis by stratifying on quartiles of baseline
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Figure 4. G-estimation analysis strati"ed by quartiles of baseline serum beta-carotene level (solid line""rst, dot-
ted"second, dashed"third, dashed with dots"fourth). Results shown using scale log(1!*)

serum beta-carotene level. Values of G(*) evaluated at *)
GE

"!0)079 were !0)65, !0)30,
!0)18, and 1)26, respectively, none of them being signi"cant at the 5 per cent level. The
Kaplan}Meier curves in each quartile overlapped (not shown) and thus did not indicate that the
structural model is inadequate when checked from this angle. Figure 4 displays the respective
G(*) curves. The three lowest quartiles give quantitatively similar results but the highest quartile
seem to di!er from the others. The estimated e!ects (95 per cent CI) using the relative survival
time scale were 0)90 (0)79, 1)00), 0)89 (0)78, 1)04), 0)92 (0)78, 1)07) and 1.01 (0)89, 1)15), respectively.
In the three lowest quartiles the treatment e!ect is harmful and of the same magnitude as the
overall e!ect. Only in the highest quartile is treatment slightly bene"cial but the wide con"dence
intervals do not exclude the possibilty of a harmful e!ect.

Comparing the results of the GE approach with the accelerated failure time ITT e!ect we may
conclude that the e!ect of treatment &as assigned' is 5)4 per cent, and the e!ect of treatment &as
received' is 7)4 per cent, and there is clear attenuation of the ITT e!ect due to non-compliance,
however, it does not change the overall conclusion of the study.

9. DISCUSSION

To estimate the magnitude of the e!ect of treatment actually received on a survival endpoint in
randomized studies the possible mechanism causing non-compliance needs to be addressed. The
ITT analysis often gives estimates biased towards the null and the AT approach can be seriously
misleading when outcome dependent non-compliance is present. The ITT approach is valid for
testing purposes and if a true treatment e!ect exists then provided the study has adequate power
the intention-to-treat test would reject the null hypothesis. The GE approach or g-estimation
introduced by Robins4 and Robins and Tsiatis6 o!ers an alternative that provides valid estimates
under a di!erent set of assumptions even when outcome dependent drop-out is present. GE
closely relates to the instrumental variable methods which were recently applied in the context of
non-compliance in randomized studies.3 Mark and Robins5 gave simulation results for the
performance of GE as compared with the ordinary ITT logrank test in a randomized study. We
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report an extended simulation study which explicitly shows that GE will work even under
outcome dependent non-compliance when the underlying structural model is correct. One
weakness of the GE approach is that extra censoring is introduced due to the estimation method
and thus it induces loss of power. In the GE approach presented in this paper we have
information on subjects until they die or are censored at some "xed time point regardless of their
drop-out status. In many studies, however, information on deaths and other events cannot be
obtained after loss to follow-up. This is the case for example if no reliable registers are available
for endpoint ascertainment. In such cases the proposed GE approach cannot be directly applied
and it needs to be modi"ed to account for possible censoring by competing risks (that is, random
loss to follow-up).14

Another weakness of GE is that it entirely relies on the structural model. Model (1) assumes
that the treatment e!ect * is constant in time and constant with respect to any other covariate;
this may be unrealistic. Time-by-treatment or treatment-by-covariate interactions as well as
random noise may exist. We proposed informal methods for checking the adequacy of the
structural model, which extend to censored survival data the method suggested by Goetghebeur
and Lapp15 for continuous normal responses. We also use this theory on real data from the
ATBC Study. However, a formal justi"cation for the diagnostic tools presented here would be
useful.

Robins and Tsiatis6 and Mark and Robins5 also indicate how the one parameter structural
model may be extended to the multi-parameter case. Multi-parameter structural failure time
models have been "tted by Robins and Greenland16 and White and Goetghebeur.17 There is also
an application for linear models with a continuous normal outcome.15 White and Goetghebeur
applied the GE approach in a more complex situation where two active treatments are compared
in a elderly hypertension trial.17 Work is in progress for extending g-estimation for the ATBC
Study data to include a treatment modifying baseline term *

2
D

i
]Z

i
in the structural model (1).

APPENDIX

Let ;
i
&f

U
(u) denote the treatment-free survival time and D*

i
&f

D* (d ) the potential time on the
active treatment for subject i.

In the active treatment arm we make the following transformation from the potential event
times (;

i
,D*

i
) to the observed event times (¹

i
, D

i
):

¹
i
"G
;

i
#*D*

i

;
i

1!*

for D*
i
(

;
i

1!*

for D*
i
*

;
i

1!*
and

D
i
"G

D*
i

;
i

1!*

for D*
i
(

;
i

1!*

for D*
i
*

;
i

1!*

with !R(*(1 because ¹
i
must be positive. Here D

i
)¹

i
and the construction satis"es the

model ¹
i
";

i
#*D

i
introduced in (1).
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The joint density for observed ¹
i
and D

i
is given by

f
T,D

(t, d )"G
f
U,D*(t!*d, d)

(1!*) :=
t

f
U,D* (t!*t, d* ) dd*

for d(t

for d"t

where 1!* is the Jacobian of the transformation for those still on active treatment at death t.
We denote by S

X
and j

X
the survival and hazard functions of a random variable X. Under the

assumption ;
i
D D
*

D*
i

the joint density simpli"es to

f
T,D

(t, d)"G
f
U
(t!*d) f

D* (d )

f
U
(t!*t) S

D* (t) (1!* )

for d(t

for d"t

which is a proper density, that is, :=
0

: t
0

f
T,D

(t, d ) dddt"1. This gives the marginal density for D
i

f
D
(d )":=

d
f
T,D

(t, d) dt

"f
U
(d!*d) f

D* (d ) C
(1!*)j

U
(d!*d)#j

D* (d)

j
U
(d!*d)j

D* (d) D
and the survival distribution for D

i

S
D

(t)":=
t

f
D
(d )dd":=

t (1~*)
:=
t

f
U,D* (u, d* ) dd* du"S

U
(t!*t)S

D*(t).

Now, the conditional distribution for ¹
i
, for given D

i
"d is

f
T DD

(t Dd)"G
f
U
(t!*d)

S
U
(d!*d)

j
D* (d)

(1!*)j
U
(d!*d)#j

D* (d)

(1!*)j
U
(t!*t)

(1!*)j
U
(t!*t)#j

D* (t)

for d(t

for d"t

which is also a proper density that integrates to 1.
Finally, the hazard for ¹

i
at time t conditional on the event Mdrop-out has happened before

time tN"IMD
i
(tN equals

j
T DD

(t Dd )"
f
T DD

(t Dd )

:=
t

f
T DD

(t Dd )dt
"j

U
(t!*d ) (9)

for those who have dropped out before time t, that is, D
i
(t and

j
T DD

(t Dd )"
f
T,D

(t, t)

:=
t

f
D
(t)dd

"(1!*)j
U
(t!*t) (10)

for those who are still on active treatment at time t, that is, D
i
*t.

In the placebo arm we observe ;
i
if there was no censoring and D

i
"0 by de"nition. The

hazard at time t is j
U
(t) corresponding to the conditional hazard (9) with D

i
"0.

Note, that if ;
i
&exp(j

u
), then (9) and (10) reduce to

j
T DD

(t Dd)"G
j
u

(1!*)j
u

for those who dropped out before time t

for those still on active treatment at time t
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and 1!* corresponds to the relative risk parameter in the proportional hazards model with
a time dependent indicator, A

i
(t)"I(D

i
*t), as an explanatory variable.
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