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Effects of lonizing Radiation

1. Direct effect

lonization, excitation

2. Indirect effect

Reactions of the species formed from the solvent
with the solute
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Sites of radiation damage to DNA
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Types of DNA Damage by Free Radicals

® DNA base damage

® DNA sugar damage

® 8,5'-cyclopurine-2'-deoxynucleosides
® DNA-protein cross-links

® Single- and double-strand breaks

® Abasic sites



Rate constants (M1 s-1) of water radicals with DNA constituents

*OH €aq He
Adenine 5x 10° 9 x 10° 1x 108
Guanine 9x 10° 1.3 x 1010 -
Cytosine 4.5 x 10° 1.3 x 1010 1x 108
Thymine 5x 10° 1.7 x 1010 5x 108
2-Deoxyribose 1.9 x 10° 1 x 107 2.3 x 107
DNA 6 x 108 1.4 x 108 5 x 107
A+B—->C+D

Rate = -d[A]/dt = K[A][B]

k = rate constant (M1 s1)

“second-order reaction”
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Reactions of hydroxyl radical with pyrimidines
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Formation of cytosine products
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Formation of cytosine products
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Formation of thymine products
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Reactions of hydroxyl radical with purines
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Formation of guanine products
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Formation of guanine products
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Reaction of e,,~ with pyrimidines
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Direct effect of ionizing radiation on DNA
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Direct effect of ionizing radiation on DNA
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Products of the free radical-induced damage to DNA bases
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Radical formed be reactions of hydroxyl radical with the sugar moiety of DNA
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Formation of Sugar Products
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Formation of Sugar Products
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2-deoxypentose-4-ulose

DNA Sugar Products
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Formation of 8,5'-cyclopurine- 2'-deoxynucleosides
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Biological effects of DNA lesions resulting from oxidative damage

®"Mutagenic lesions

DNA polymerase bypasses the lesion inserting a “wrong” intact base opposite the lesion.

Mutagenic lesions influence replication fidelity, thereby causing mutations and contributing
to disease processes.

"Cytotoxic lesions

DNA polymerase is blocked by the lesion.

Cytotoxic lesions block DNA replication, gene transcription, or chromosome segregation,
ultimately leading to cell death.



Base-pairing of 8-hydroxyguanine (8-OH-Gua)
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Base-pairing of 2,6-diamino-4-hydroxy-5-formamidopyridine (FapyGua)
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Mutation by 8-hydroxyguanine and 2,6-diamino-4-hydroxy-5-formamidopyrimidine
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Mutations generated by products of free radical-induced damage to DNA
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Cytotoxic lesions
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DNA Damage & Repair

Understanding DNA Repair Mechanisms

Interventions against mutagenic or cytotoxic DNA lesions aimed at preventing damage or
increasing DNA repair capacity might protect from cancer and/or aging.

Understanding DNA complex repair mechanisms would offer potential for drug development
and pharmacological modulation of DNA repair efficiency.

The ability to modulate DNA repair might lead to improvement and effectiveness of therapies.
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Excision of a modified DNA base by a DNA glycosylase
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Gas Chromatography/Mass Spectrometry (GC/MS)
with Isotope-dilution technique

Liquid Chromatography/Mass Spectrometry (LC/MS)
with Isotope-dilution technique



DNA Analysis by GC/MS and LC/MS
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Analysis of DNA Base Damage by GC/MS
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Fi1G. 1. GC separation of a trimethylsilylated HCOOH hydrolysate of irradiated calf thymus DNA.
Dose: 330 Gy. Column: fused silica capillary (12 m., 0.2-mm i.d.) coated with crosslinked SE-54,
programmed after 3 min at 100°C from 100 to 250°C with a rate of 7°C/min. For other details. see
Materials and Methods. Peak identifications are given in Table 1.
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Assurance of Precise Measurements
(Isotope-Dilution Mass Spectrometry)
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Fragmentation mechanism of 8-hydroxy-2'-deoxyguanosine
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lon-current profiles at m/z 168 and 170 recorded during LC/MS-SIM
analysis of an enzymic hydrolysate of DNA

miz 170
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m/z 168: 8-hydroxy-2'-deoxyguanosine
m/z 170: 8-hydroxy-2'-deoxyguanosine-180




Measurement of 8-OH-dGuo in cells by LC/MS

MSD1 168, EIC=167.7:168.7 (JS2A89.D) API-ES, Pos, SIM, Frag: 100 (TT)

m/z 168

m/z 117 (S)

lon current profiles at m/z 168 (BH,") of 8-OH-dGuo and
at m/z 170 (BH,*) of 8-OH-dGuo-180



Structure of the CSB protein (1493 amino acids, 168 kDa)

and the location of the designed mutants
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Cellular repair of 8-hydroxy-2'-deoxyguanosine in DNA of CS-B cells
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Cellular repair of 8-hydroxy-2'-deoxyadenosine in DNA of CS-B cells
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Cellular repair of 8-hydroxy-2'-deoxyguanosine and 8-hydroxy-2'-deoxyadenosine
in DNA of fibroblasts from CS-B patients
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BRCA proteins

N-terminal RING BRCT C-terminal
domain NLS
BRCA1E | 1,863 aa
BRC

repeats NLSs

BRCA2 [ 3,418 aa

Cell lines
1. AG10097 is a non-malignant lymphoblastoid cell line that expresses wild type BRCA1 and BRCA2 proteins.

2. HCC1937 is a primary ductal breast carcinoma cell line from a female breast cancer patient. This cell line is
homozygous for BRCAL1 germline mutation that causes deletion of the C-terminus of BRCAL1 yielding a truncated
BRCA1 protein that lacks the BRCT domain.

3. HCC1937BL is an EBV-transformed B-lymphoblastoid cell line established from peripheral blood lymphocytes of
the same patient. This cell line is heterozygous for the same BRCA1 germline mutation and expresses full-length
BRCA1 protein.



Cellular repair of 8-hydroxy-2'-deoxyguanosine in DNA

of breast cancer cells with BRCA1 mutation
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Cellular repair of (5'S)-8,5'-cyclo-2'-deoxyguanosine in DNA

of breast cancer cells with BRCA1 mutation
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Types of DNA Damage by Free Radicals

® DNA base damage

® DNA sugar damage

® 8,5'-cyclopurine-2'-deoxynucleosides
® DNA-protein cross-links

® Single- and double-strand breaks

® Abasic sites






Mutation by 5-hydroxycytosine and 5-hydroxyuracil
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Base-pairing of 8-hydroxyadenine

8-hydroxyadenineecytosine
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Hydrolysis of a DNA lesion
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GC/MS Analysis of DNA

1. Hydrolysis

a. enzymatic hydrolysis
b. acidic hydrolysis

2. Derivatization




Xeroderma pigmentosum (XP)

Human hereditary disease
Deficiency in repair of oxidative DNA damage

XP patients are prone to the early onset of severe photosensitivity of the
exposed regions of the skin, high incidence of skin cancers and frequent
neurological abnormalities.

Increased frequency of neoplasms affecting internal organs is also common.
XP is characterized by defective nucleotide-excision repair of DNA damage.

There is evidence that some components of oxidative DNA damage are not
repaired in XP cells. 1 e irrediated
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Reactions of water radicals with substrates

addition

abstraction



Reactions of water radicals with substrates
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Cellular repair of 8-hydroxy-2'-deoxyguanosine in DNA of XPC keratinocytes
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Cellular repair of (5'S)-8,5'-cyclo-2'-deoxyadenosine in DNA of XPC keratinocytes
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Cellular repair of (5'S)-8,5'-cyclo-2'-deoxyguanosine in DNA of XPC keratinocytes
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Cellular repair of (5'R)-8,5'-cyclo-2'-deoxyguanosine in DNA of XPC keratinocytes
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Cellular repair of (5'R)-8,5'-cyclo-2'-deoxyguanosine in DNA

of breast cancer cells with BRCA1 mutation
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We observed lower activity of DNA repair and the accumulation of major DNA
lesions induced by oxidative DNA damage in human cells with mutations in CSB,
BRCA1 and XPC genes.

The results demonstrate reduced capability of CS cells, BRCAl-mutant breast
cancer cells and XPC cells in the cellular repair of oxidative DNA damage.

The failure to repair the DNA lesions resulting from oxidative DNA damage
might contribute to the pathogenesis of these diseases.

Future therapeutic interventions might involve efforts to protect against
oxidative DNA damage and to increase the capacity of cells to repair it.



