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Joint Effect of Genes and Environment Distorted by Selection Biases:
Implications for Hospital-based Case-Control Studies

Sholom Wacholder, _ Nilanjan Chatterjee, and hospitalized controls facilitate the collection of blood and other
Patricia Hartge biospecimens and may be more willing to participate than
Divisionof CancerEpidemiology and Genetics, NationalCancerInstitute, population controls. But who should be selected as a control in
NIH.Bethesda,Maryland 20892-7244 a study of gene-environment interaction? The selection of pa-

tients admitted to the hospital because of a disease that is either
caused or prevented by an exposure of interest biases the

Abstract estimate of the effect of the exposure (3). The analogous re-

The hospital-based case-control design enhances the quirements for unbiased estimation of an interaction have not
response rates in studies that require the collection of been established. For example, in a case-control study of lung
biological samples from all of the participants. There are cancer designed to assess how a gene modifies the effect of
simple, established criteria for selecting controls so as to smoking on the risk of lung cancer, can controls be selected
estimate the effect of a single factor without bias, but the from patients admitted because of a smoking-related condition?
analogous requirements for assessing an interaction are By considering the components of the gene-environment inter-
less clear. We derive these conditions by calculating the action parameter, we trace the effects of retaining or dropping
potential bias from selecting controls who were admitted the exclusion rule. We demonstrate the impact of alternative
for treatment of diseases related to either or both of the exclusion rules and establish the criteria for determining which
exposures of interest, designated as a gene variant (G) strategies are valid for assessing additive or multiplicative
and an environmental agent (E). There is no bias in the interaction. Finally, we show how the algebra we develop
estimate of the effect of E when G is associated with the applies generally to the problems of assessing an interaction in
control condition, whether causally or because of the presence of selection bias or confounding in unmatched
confounding. There is no bias in estimating multiplicative case-control studies.
interaction between G and E for the disease of interest

when there is no multiplicative G-E interaction for the Structure of diagnosis related selection bias
control disease, even when the control condition is caused
by G or E; if a mixture of several control diseases are In general, valid inference from case-control studies dictates

that the distribution of the study factors in controls must reflectused, however, the absence of G-E interaction in each
individual disease does not ensure a lack of overall bias the distribution of those factors in the study base from which

when controls are pooled. Hospital control designs are the cases arise (6). In a hospital-based study, a person with the
much less robust for assessing additive interaction. We case-defining condition who would appear at the study hospital
conclude that the ideal control disease in a hospital-based and be enrolled in the study as a case would also appear at the
study of gene-environment interaction is not caused by study hospital and be enrolled in the study as a control if he had
either G or E and that choosing controls from several the control-defining disease and vice versa; (3) throughout, we
conditions to act as a combined control group is a useful assume that this requirement is met. Second, when the goal is

to estimate the effect of a single exposure on the risk of disease,strategy. This formulation extends to the general problem
of distortion of joint effects from selection biases or the exposure of interest must be unrelated to the risk of devel-
confounding, oping the condition that brought the control to the hospital (3).

But what are the requirements for valid hospital controls when
the concern is the estimation of an interaction parameter or the

Introduction effect of an exposure in a stratum defined by one or more
Epidemiologists are using an increasing variety of traditional, genotypes?
modified, and novel designs for epidemiological studies, de- This work is motivated by the planning of a case-control
signed to assess the effects of genes and environmental factors study of lung cancer. Our main interests lie in estimating the
jointly. The hospital-based case-control study (1--5) has always effects of genetic factors, such as alleles ofa DNA repair gene,
been attractive for studies of disease like brain cancer with alone and jointly with smoking, on the risk of lung cancer; we
referral patterns that make it difficult to characterize the un- are not particularly interested in estimating the effect of smok-
derlying study base (6). For molecular epidemiology studies, ing on the risk of lung cancer. Controls for this study would be

asked to respond to a questionnaire and provide blood and other
biospecimens. Given the difficulties of choosing appropriate
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accordance with 18 U.S.C. Section 1734 solely to indicate this fact. we could decide which conditions from which to choose hos-
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Table I Odds ratio of hospitalization for CVD and lung cancer according to smoking (E) and DNA repair gene (G)a

Odds ratios

E+ (smokers) E- (nonsmokers)

CVD Lung cancer CVD (source of improper
controls) Lung cancer

G+ (abnormal variant of genotype ABC or B [3
for DNA repair)

G- (normal variant of genotype A a 1 I
for DNA repair)

"E, exposure to an environmental agent such as smoking; G, exposure to a gene variant such as a DNA repair gene. These results apply directly to any environmental
agent E and gene variant G.

Table2 Interpretation of parameters _'h

Parameter (label) Effect Algebra Estimate with Estimate with improper
proper controls (CVD) controls

RW of E in G- Effect of E specific to G- R(E+,G-)/R(E-,G-) ot a/A

RR orE in G+ Effeet of E specific to G+ R(E+,G+)/R(E-,G+) a'/ (oty)/(AC)
RR of E adjusting for Ga Summary effect of E over G a cdA

RR of G in E- Effect of G specific to E- R(E-,G+)/R(E-,G-) /3 /3/B

RR of G in E+ Effect of G specific to E+ R(E+,G+)/R(E+,G-) /37 (/3",/)/(BC)
RR of G adjusting for E'a Summary effect of G over E /3 /3/13

Additive interaction Ratio of difference between {[R(E+,G+) - R(E-,G t-)] ..... 1 - a ----/3 + afly 1 - /3/13- odA - .t- a/3_//ABC
stratum-specific risk IR(E+,G-) -
differences and R(E-,G-) R(E-,G-)]}/R(E-,G ) =

{[R(E+,G+) - R(E+,G-)] -
[R(E-,G+) -
R(E-,G-)] }/R(E-,G-)

Multiplicative interaction Ratio of strata.tin-specific RRs [R(E+,G+)/R(E-,G+ )]/[R(E+,G-)/ o_ylu = /37I[3 = 7 [(ay)/(AC)]l[a/A] -
R(E-,G-)] = [(/37)/(BC)]/[/3/B] = 7/C
[R(E+,G+)/R(E+,G-)]/[R(E-,G+)/
R(E-,G-)]

o R(E+,G+), the absolute risk of disease in those exposed to E and to G; R(E+,G-), R(E-,G+) and R(E-,G-) are defined analogously.
l, The arguments in bold-face type are used to emphasize the contrast being made and do not change the interpretation.
" RR, is the relative risk (odds ratio) for the specified level of environmental agent E and genetic variant G relative to those unexposed to E and G.
alf there is no G-E interaction for lung cancer or for CVD, i.e., 7 = C - 1.

risk factor for lung cancer but not the subject of this study, and mental exposure and a genetic variant on the odds ratio using
possibly to the same genes that might be investigated for the Greek letters when the outcome is lung cancer and Roman
study of lung cancer. However, we were unable to determine letters when the outcome is hospitalization for CVD. That is,
from the literature what the impact would be of choosing CVD z the odds ratios for lung cancer among those exposed to smoking

controls, given that smoking affects the risk of CVD, and that alone or the gene alone are represented by a and /3, respec-
a DNA repair gene suspected of being related to lung cancer tively, and for the doubly exposed by a/37. Formally, a and/3
might be truly related to CVD. arc the smoking and gene effects at the baseline level of the

We, therefore, decided to address this question ourselves, gene and smoking, respectively, and 7 is the multiplicative
For simplicity, we categorize smoking and genotype into 2 interaction parameter for lung cancer. The variables A, B and C
levels, E+ or E- for smokers and nonsmokers and G+ or G- for CVD are analogous to a, /3 and 3' for lung cancer.
for those who do or do not carry the allele of interest. For our From these components, one can derive the expected val-main points, we present a simple numerical example first to
demonstrate our point. To generalize, we show the results ues of the estimates of the effects of E and G and multiplicative

or additive interaction parameters from a properly designed andabstractly as well. We refer to a hospital control group, such as
conducted case-control study with lung cancer cases and CVDthose diagnosed with CVD, as "improper," if it does not meet

the stringent requirement that E and G not be related to the risk controls. For example, the odds ratio, equivalent for rare dis-
of being hospitalized with the control condition, ease to risk ratio. RR for E+,G- relative to the baseline

E-,G- will be distorted if A > 1 because smokers will be
overrepresented in CVD controls compared with the study base.

Results and Examples Table 2 uses the components of Table 1 to compare the ex-
We take a two-track approach to make our points clear. We pected values of the estimates from a study using proper con-
establish the general principles, and we show numerical exam- trois with one using CVD controls.
pies for our most important points. We use the notation in Table
1 to present general models for the joint effects of an environ- Exposure and Gene Effects. The first two rows of Table 2

confirna the established principle that the exposure effect can be
estimated without bias if the exposure is unrelated to the control
disease. The estimated odds ratio orE or G using CVD controls

2Theabbreviationusedis: CVD, cardiovasculardisease, will be correct when A = l or B = l in the absence of
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Table 3 Hypothetical example in which the effect of G is estimated without bias even though the control disease is caused by E

In this hypothetical example, E+ triples the risk of CVD but G has no effect. If one used CVD controls with lung cancer cases, the odds ratio for E on lung cancer is
biased by a factor of one-third; the odds ratio would be 5 instead of 15. But the effect of G is 3 both when proper controls and when CVD controls are used.

E ,G- E+,G- E ,G+ E+,G+

Proper controls 100 100 100 100

Improper (CVD) controls 100 300 100 300
Cases (lung cancer) 100 1500 300 4500

Odds ratio: cases vs. proper controls Reference 15 3 45
Odds ratio: cases vs. improper controls Reference 5 3 t5

Odds ratio: improper vs. proper controls Reference 3 1 3

Table 4 Hypothetical example in which the effect of G is estimated without bias even though the control disease is caused by E and there is confounding of the
effect of G by E

In this example, G and E are associated, E increases the risk by a factor of 2 in both G- and G+, and the effect of G is confounded by E. The odds ratio for G when

E is ignored is 3 with proper controls and 3.2 with improper controls, instead of the true 2. Nevertheless, the effect of G is estimated correctly in subgroups defined by
E+ and E- and, therefore, in adjusted analyses.

E-,G- E+,G- E-,G+ E+,G+

Proper controls 100 200 200 100

Improper (CVD) controls 100 200 400 200
Cases (lung cancer) 100 400 800 800

Odds ratio: cases w_. proper controls Reference 2 4 8
Odds ratio: cases vs. improper controls Reference 2 2 4

Odds ratio: improper vs. proper controls Reference 1 2 2

multiplicative interaction (C = 1). The asymmetry between G+ Multiplicative or Additive Interaction. For unbiased estima-
and G- and between E+ and E- when C _ 1 are artifacts of tion of multiplicative interaction, Table 2 shows that the re-
the arbitrary definitions of + and -. Table 3 shows a hypo- quirement is no multiplicative interaction between E and G for
thetical example in which the use of improper CVD controls for the control disease (C = 1). Even if E, or G, or both cause or
lung cancer cases produces bias in the estimate of the effect of prevent CVD, the multiplicative interaction still can be esti-
smoking but not necessarily of the genetic variant, mated without bias. For additive interaction, often of greater
Confounding. The estimates of the effects of E are unbiased at interest, the requirement is more stringent, namely A = B =
each level of G even when G is related to the risk of CVD (B ¢ C = 1. Thus, because smoking increases the risk of CVD, it
1) when E is unrelated to the control disease (A = 1) and there would be impossible to estimate the effect of an additive
is no multiplicative interaction for the control disease (C = 1). interaction between smoking and any gene on lung cancer risk
It follows that under these conditions the G-adjusted estimate is unless A were known, even if there were no gene effect or
also unbiased because it is a weighted average of the unbiased interaction on CVD risk.
estimates at the two levels of G (7). That is, if G and E are Table 5 shows the situation in which the overall and the
associated (in the controls or in the study base), then G con- stratum-specific G and E effects are both distorted, and yet the
founds the crude estimate of the exposure effect when we multiplicative interaction term is estimated correctly. In Table
choose a control group related to G, but the estimate of the 6, the overall and stratum-specific G and E effects are both
effect of E can be deconfounded completely by adjusting for G distorted, as is the multiplicative interaction. The additive in-
(3). Of course, if there is a multiplicative G-E interaction, the teractions, which we define as the difference between the dif-
weighted average will depend on 7. ferences of the odds ratios for E in G+ and in G-, is also

It is noteworthy that ire and G are associated in the study biased.
base, one needs to adjust for G if it is a risk factor for either the More Than One Disease Used to Define Patients Eligible to
case or the control diseases. For instance, one could consider Be Controls. It is often noted that choosing hospital controls
using traffic-accident controls for a study of smoking and lung from more than one disease can provide protection against the
cancer under the assumption that alcohol, but not smoking, is an possibility of a major bias in the estimation of the effects of E
independent risk factor for accidents. Indeed, there will be more and G. A single control disease might indeed be related to the
smokers among these controls than in a proper control group; factor of interest. The bias would be mitigated if other diseases
standard adjustment in the analysis for those risk factors for are used as controls as well, because the factor might be
accidents that are correlated with smoking completely elimi- unrelated to disease or related in the opposite direction; how-
nares the bias. As ever, unmeasured risk factors can induce bias. ever, with multiple diseases, there is more chance of at least
In particular, that an unmeasured factor X associated with some bias because each disease could be related to exposure,
exposure can confound the estimate of effect not only if X is a and it is unlikely that the net effect will entirely cancel. Of
risk factor for tbe study disease but also if it is a risk factor for course, one or more sets of controls can be excluded from an
the control disease, analysis when their condition is found to be related to the

Table 4 illustrates the situation in which the adjusted exposure under study.
estimates of effect of exposure are unbiased even though the One unexpected consequence of the algebra of bias induc-
crude effect would be biased when using improper controls, tion in the G-E interaction context is the effect of pooling
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Table 5 Hypothetical example in which the control condition is caused independently by G and E in a multiplicative model, yet multiplicative interaction is
estimated without bias

In this hypothetical example, both E and G increase the odds of the disease used for improper controls by 2-/'old according to a multiplicative model. Nonetheless, the
multiplicative interaction is estimated correctly as 1,even with improper controls. However, the additive interaction is estimated with bias. With improper controls, additive
interaction parameter is estimated as (2.25 - 1.5) (1.5 - 1) - 0.25, instead of 4 = (9 3) - (3 - I). Because the control disease is related to both E and G, the effects
of E and G arc estimated with bias when using improper controls.

E-,G- E+,G- E-,G+ E+,G+

Proper controls 100 100 100 100
Improper (CVD) controls 100 200 200 400

Cases 100 300 300 900

Odds ratio vs. proper controls Reference 3 3 9

Odds ratio vs. improper controls Reference 1.5 1.5 2.25
Odds ratio: improper vs. proper controls Reference 2 2 4

Table 6 Hypothetical example in which the control condition is caused independently by G and E in an additive model, yet neither additive nor multiplicative
interaction is estimated without bias

In this hypothetical example, both E and G increase the odds of the disease used for improper controls by a factor of 3 according to an additive model. Nonetheless,
the additive interaction using proper controls is estimated as -0.27 - (1.40 - 1.33) (1.33 - 1). Not surprisingly, the multiplicative interaction is also estimated with
bias either.

E-,G- E+,G- E-,G+ E+,G+

Proper controls 100 100 100 100
Improper (CVD) controls 100 300 300 500

Cases (hmg cancer) 100 400 400 700

Odds ratio: cases vs. proper controls Reference 4 4 7

Odds ratio: cases vs. improper controls Reference 1.3 1.3 1.4
Odds ratio: improper vs. proper controls Reference 3 3 5

patients with a mixture of diseases into a single control group. Discussion
Even if there is no multiplicative interaction for each of two This work merges the quantitative evaluation of selection bias
control diseases, there is likely to be bias when estimating with the measurement of the joint effects of two factors. We
multiplicative interaction when the two are pooled in a single have specifically discussed the joint effects of a hereditary and
control group. Let us assume that the odds ratios for disease 1 an environmental or behavioral factor on disease, which mort-
in (G+,E-), (G-,E+) and (G+,E+) relative to (G-,E-) are vated this work. Our results apply to the general problems of
2, 4, and 8, and the odds ratios for disease 2 are 4, 2, and 8, selection bias and confounding, beyond the focus on hospital-
respectively. With a combined control group consisting of based studies in this paper and, equally, to interactions between
equal numbers from disease 1 and disease 2, the odds ratios for two genes or between two environmental factors. The param-
the disease of interest will be 3, 3, and 8, respectively, no longer eter estimates in Table 2 hold, for example, for a population-
following a multiplicative pattern and, thereby, causing a vio- based case-control study in which the case ascertainment is
lation of the requirement of no multiplicative interaction for the complete and "improper controls" are a consequence of non-
control series because C does not equal 1; most often the response in controls differential by a level of one or more
magnitude of the bias will be minor except when the magni- factors. In principle, extensions to multiple categories or even
tudes of the effects are large. Any average of the interaction to continuous forms of E and to third and higher-order inter-
estimates using each control series separately is unbiased, if the actions follow the same logic.
estimate from each individual series is unbiased; polytomous In considering the effects of selection bias, we have as-
(8) logistic regression uses a weighting method that produces an sumed the fulfillment of each of the standard case-control
efficient and unbiased estimator, requirements, including those related to case and control ascer-
The Effects of Selection Bias and Confounding on the Es- tainment and selection, common catchment area, and equiva-
tlmates of Joint Effect of Two Factors in Case-Control lent exposure assessment. In addition, we assume, when appro-
Studies. Hospital controls are just one example of controls priate, that special problems peculiar to hospital controls, such
selected with potential bias. Our results extend not only to as Berkson's bias, do not have an important impact (3).
studies with hospital controls but to any situation in which cases For concreteness, we discuss several important lessons
or controls are selected in a biased manner with respect to a from this work in the context of the use of hospital controls in
factor of interest. That is, Table 2 applies when the ratio in studying the joint effects of G and E. First, there is no bias in
controls:cases of the odds of selection of a control with the estimate of the multiplicative G-E interaction when there is
(E+,G-), (E-,G+), or (E-,G-) relative to (E-,-G) are A, no G-E interaction for the disease used for controls, even when
B, and ABC, respectively, just as for the improper controls in the control condition is caused by either G or E. Similarly, even
Table 1. In fact, these results apply to the possible distortion of the effect of E, stratified on G, can be estimated without bias
a two-way interaction estimate attributable to the confounding even when G causes the control diseases. The analogous state-
effects of an unmeasured third factor that is differential in cases ment holds when E and G are switched.

and controls, possibly caused by a three-way interaction. Second, bias can arise when assessing multiplicative in-
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teraction using two or more control diseases, even if there is no multiplicative interaction between an environmental and a ge-
multiplicative interaction in each control disease. Even if each netic factor but only under the assumption, impossible to verify
of two control conditions, perhaps CVD and accidents, indi- directly, that the factors are independent in the study base
vidually lead to no bias, a pooled control group can produce (1, 13).
bias. Thus, the protection provided by the use of multiple As explorations of gene-environment effect continue, in-
diseases instead of only one for estimating the effects of one vestigators will develop new designs and modify old ones to
factor does not extend completely to studying multiplicative increase efficiency. Subtle opportunities for bias can arise, as
interaction in the situation when both factors are related to illustrated by the potentially biased estimation of the effects of
disease; the use of polytomous logistic regression (8) might genes among those exposed to the environmental variable,
alleviate this problem, depending on the precise choice of eligible diagnoses. Never-

Third, the additive interaction effect is less robust against theless, the fundamental logic of hospital-based case-control
bias introduced when E or G is related to the control condition, design and the attendant control selection requirements hold in
To measure additive interaction of G and E, when E is smoking, the setting of research on gene-environment interactions. The
in a study of lung cancer, one must use only those diseases that serious problems with hospital controls, particularly for addi-
G neither causes nor prevents among either smokers or non- tive interactions, must be considered against a background of
smokers. For example, using bladder cancer controls can pro- other problematic control selection strategies. Alternatives, in-
duce bias in assessing a gene-smoking additive interaction cluding sibling controls, population controls, and case-only
when studying lung cancer, even if G is unrelated to the control designs, face their own challenges to validity or efficiency,
diseases. On the other hand, there would be no bias in assessing including poor response rates, overmatching, and important
multiplicative interaction if there was a G effect on the risk of assumptions of independence that are difficult to verify.
bladder cancer but no multiplicative interaction with smoking.
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