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Kin-cohort design can be used to study the effect of a genetic mutation on the risk of multiple events, using the same study.
In this design, the outcome data consist of the event history of the relatives of a sample of genotyped subjects. Existing
methods for kin-cohort estimation allow estimation of the risk of one event at a time with the assumption that the censoring
events are unrelated to the genetic mutation under study. These methods, however, may produce biased estimates of risk
when multiple events are related to the genetic mutation, and follow-up of some of the events may be censored by the onset
of other events. Using a competing risk framework to address this problem, we show that cause-specific hazard functions
for carriers and noncarriers are identifiable from kin-cohort data. For estimation, we propose an extension of a composite-
likelihood approach we described previously. We illustrate the use of the proposed method for estimation of the risk of
ovarian cancer from BRCA1/2 mutations in the absence of breast cancer, based on data from the Washington Ashkenazi
Kin-Cohort Study. We also evaluate the performance of the proposed estimation method, based on simulated data that were
generated following the setup of the Washington Ashkenazi Study. Genet Epidemiol 25:303–313. Published 2003 Wiley-Liss,
Inc.w
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INTRODUCTION

Struewing et al. [1997] first introduced the kin-
cohort design in the context of the Washington
Ashkenazi Study (WAS). In this study, blood
sample and questionnaire data were collected
from 5,318 Ashkenazi Jewish men and women
volunteers (probands) living in the Washington,
DC area. Based on blood samples, volunteers were
tested for three specific founder mutations for this
population in BRCA1/2 genes. Struewing et al.
(1997) estimated the absolute risk of breast cancer
(penetrance) among BRCA1/2 mutation carriers,
using family history data of the genotyped
volunteers. Wacholder et al. [1998], who formally
proposed this novel approach as a kin-cohort
design, established the main analytic principle
behind this method, showing how penetrance can
be estimated by relating the disease history of the
relatives to the genotypes of the probands.
Wacholder et al. [1998] and Gail et al. [1999b]
discussed various practical advantages of this
approach, as well as some of its limitations. Gail et
al. [1999a], Moore et al. [2001], and Chatterjee and
Wacholder [2001] described various extensions of

the original analytic approach of Wacholder et al.
[1998] for estimating age-specific penetrance
(cumulative risk) of a disease from kin-cohort
data.
A known advantage of the kin-cohort design is

its ability to study multiple outcomes, using
retrospective cohort data from the relatives.
Although prospective cohort studies can be used
to collect similar data in principle, the logistics
and time needed for implementing such a design
can be quite daunting relative to the kin-cohort
design. The data from the Washington Ashkenazi
Kin-Cohort Study, for example, were already
utilized to examine the effect of BRCA1/2 muta-
tions on the risks of several different cancers
[Struewing et al., 1997] and on survival after the
onset of breast cancer [Lee et al., 1999].
Currently, we are analyzing the mortality history

data of WAS relatives to explore the association
between BRCA1/2 mutations and the risk of overall
mortality. Since BRCA1/2 mutations are well-
known to be related to a major increase in the risk
of breast and ovarian cancer in women, and possibly
prostate cancer in men, we are mainly interested
in examining possible associations between the
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mutations and the risk of mortality that cannot be
explained by deaths from these known BRCA1/2-
related cancers. Thus, we consider mortality in the
absence of these cancers as the primary endpoint of
interest. Relatives who were diagnosed with these
cancers are considered to be censored at the onset of
their cancers. The main scientific results from this
study will be presented elsewhere.
A common assumption for all of the existing

methods for kin-cohort estimation [Wacholder et
al., 1998; Gail et al., 1999a; Moore et al., 2001;
Chatterjee and Wacholder, 2001] is that the censor-
ing mechanism does not depend on the mutation
under study. This assumption is clearly violated in
our mortality study, because the onset of any of the
known BRCA1/2-related cancers is treated as a
censoring event. The same problemmay arise more
generally. In an evaluation of the risk of ovarian
cancer, for example, subjects may be censored
because death from breast cancer could occur
before ovarian cancer that would otherwise be
diagnosed. In this article, we study the methods for
quantifying and estimating disease risk from kin-
cohort data when the risk of censoring events may
be related to the mutations. First, we review the
original analytic approach of Wacholder et al.
[1998] and examine why the independent censor-
ing assumption was needed in that approach. Then
we introduce a competing risk framework to
address this problem. We show that cause-specific
hazard functions, a concept widely used in the
analysis of standard cohort data, can be identified
in a kin-cohort setting. We discuss the interpreta-
tion of these functions and the conditions under
which they can be translated to estimates of
penetrance (cumulative risk) function. Next we
propose the use of a composite-likelihood approach
[Chatterjee and Wacholder, 2001] and a related
Expectation-Maximization (EM) algorithm for the
estimation of cause-specific hazard functions in
carriers and noncarriers. We apply the proposed
method to data from theWAS study, to estimate the
risk of ovarian cancer from BRCA1/2 mutations in
the absence of breast cancer. Finally, we evaluate
the performance of the proposed method, based on
simulated data.

METHODS

ORIGINAL ANALYTIC APPROACH FOR
KIN-COHORT ESTIMATION

Let us assume we are studying a genetic
mutation with a dominant mode of inheritance,

so that g ¼ 0 corresponds to a subject who does
not carry the mutation, and g ¼ 1 corresponds to
subjects who carry one or two copies of the
mutation. Let FgðtÞ denote the cumulative risk
(penetrance) of a disease up to age t associated
with genotype G ¼ g. The penetrance functions
F0ðtÞ and F1ðtÞ cannot be directly estimated from
kin-cohort data, because the mutation status of the
relatives is unknown. Wacholder et al. (1998)
observed that, for a rare mutation with allele
frequency f, the odds of carrying the mutation
among first-degree relatives of noncarriers and
carriers are given by 2f : ð1� 2fÞ and
ð0:5þ fÞ : ð0:5� fÞ, respectively. Consequently,
the cumulative risks of disease among first-degree
relatives of noncarriers and carriers are given by
the equations

R0ðtÞ ¼ ð1� 2fÞF0ðtÞ þ 2f F1ðtÞ
R1ðtÞ ¼ ð1=2� fÞF0ðtÞ þ ð1=2þ fÞF1ðtÞ

ð1Þ

respectively. Wacholder et al. [1998] observed that
R0ðtÞ and R1ðtÞ in Equation (1) can be directly
estimated using the Kaplan-Meier disease inci-
dence curves for the relatives of noncarriers and
the relatives of carriers, respectively. Thus if allele
frequency f is known or can be externally
estimated, then the two equations in (1) can be
solved for each t to obtain an estimate of F0ðtÞ
and F1ðtÞ.
In Equation (1), the cumulative risk of the

disease for a person up to a given age t is defined,
assuming the person is not censored from other
causes before age t. In the presence of censoring, it
is well-known that the Kaplan-Meier incidence
curve gives an unbiased estimate for the cumula-
tive risk function only if the risk of the disease and
the risk of censoring events are independent.
Specifically, Kaplan-Meier estimation of R0ðtÞ and
R1ðtÞ will be valid only if the independent
censoring assumption holds separately for the
relatives of carriers and the relatives of noncar-
riers. Clearly, the risks of the disease and the
censoring are correlated if both of the events are
affected by the mutation under study. For the
relatives of noncarriers, very little correlation will
be induced by a rare mutation, since only a small
fraction of these relatives will be carriers. By
contrast, the mutation will be relatively common
(about 50%) in the relatives of carriers, and thus
the correlation induced will be important to
consider. When the correlation is strongly posi-
tive, the Kaplan-Meier incidence curve for the
relatives of carriers could seriously underestimate
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R1ðtÞ. Since the solution of F1ðtÞ from Equation (1)
is given by 2R1ðtÞ � R0ðtÞ, the resulting estimate of
F1ðtÞ also will be an underestimate of the true
cumulative risk function (see Fig. 1).
In an ordinary cohort study, where the mutation

status of cohort members could be directly
observed, the above issue does not arise. In this
case, the cumulative risk of the disease for
noncarriers and carriers can be directly estimated
by the corresponding Kaplan-Meier disease in-
cidence curves, using the weaker assumption that
the risks of the disease and the censoring are
independent, conditional on the mutation status
of a subject.

CAUSE-SPECIFIC HAZARD: DEFINITION,
INTERPRETATION AND IDENTIFIABILITY

For dealing with multiple events, where some of
the events may censor the follow-up time for other
events, a ‘‘competing risk’’ model provides the
general framework. Let T1 and T2 denote time to
two competing events E1 and E2. We will assume
the standard definition of ‘‘competing risks,’’ i.e.,
for any given subject, only the first of the two
events is observable, and the follow-up for the

second event ends at the onset of the first event. In
the presence of competing risks, it is useful to
think of estimation in terms of ‘‘cause-specific
hazard’’ functions. The cause-specific hazard
function for the ith event at time t for an
individual with genotype G ¼ g can be defined as

ligðtÞ ¼

lim
dt#0

1

dt
Pr Ti 2 t; tþ dt½ ÞjT1 � t;T2 � t;G ¼ gf g:

ð2Þ

That is, ligðtÞ is the instantaneous probability that
an individual with genotype G ¼ gwill experience
the event Ei at time t, given that s/he has been ‘‘at
risk,’’ i.e., has been free of both events until time t.
Before describing estimation, it is instructive to

understand the identifiability of these cause-
specific hazard functions. When dealing with a
single event, Wacholder et al. [1998] established
the identifiability of the genotype-specific cumu-
lative risk functions by establishing their relation-
ship with the cumulative disease incidence
functions for the relatives of carriers and the
relatives of noncarriers (see Equation 1). Next, we
show that while dealing with multiple competing
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Fig. 1. Estimated age-specific cumulative incidence of first ovarian cancer (ovarian cancer in absence of breast cancer), based on

Washington Ashkenazi Study. Dotted line shows estimate that ignores effect of BRCA1/2 mutations on breast cancer. Dashed line

shows estimate that adjusts for effect of mutations on risk of breast cancer.
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events, similar relationship can be established
through cause-specific hazard functions.
Let us define

rigðtÞ ¼

lim
dt#0

1

dt
Pr Ti 2 t; tþ dt½ ÞjT1 � t;T2 � t;G0 ¼ gf g

ð3Þ
to be the cause-specific hazard function for the ith
event among relatives of probands with genotype
G0 ¼ g. Each of the four cause-specific hazard
functions rigðtÞ; i ¼ 1; 2; g ¼ 0; 1 can be empirically
estimated by the corresponding proportion of
‘‘at-risk’’ relatives who experience the given event
at time t. As derived in the Appendix, rigðtÞ;
i ¼ 1; 2; g ¼ 0; 1 now can be related to the cause-
specific hazard functions of interest ligðtÞ;
i ¼ 1; 2; g ¼ 0; 1 by the equations

rigðtÞ ¼
X
g0¼ 0;1

lig0 ðtÞPrðG ¼ g0jG0 ¼ g;

T1 � t;T2 � tÞ;
ð4Þ

where

PrðG ¼ g0jG0 ¼ g;T1 � t;T2 � tÞ

¼ PrðT1 � t;T2 � tjG ¼ g0ÞPrðG ¼ g0jG0 ¼ gÞP
g0¼ 0;1

PrðT1 � t;T2 � tjG ¼ g0ÞPrðG ¼ g0jG0 ¼ gÞ :

Above, the joint probability PrðT1 � t;T2 � tjG ¼
g0Þ can be characterized by the cause-specific
hazard functions of individual events, using the
standard formula [e.g., Chapter 7 in Kalbfleisch
and Prentice, 1978]:

PrðT1 � t;T2 � tjG ¼ g0Þ

¼ exp �
Z t

0

l1g0 ðsÞds
� �

exp �
Z t

0

l2g0 ðsÞds
� �

:

Further, PrðG ¼ g0jG0 ¼ gÞ, the conditional prob-
ability of a relative’s genotype given that of the
proband, can be computed as a function of the
allele frequency, assuming a Mendelian mode of
inheritance. Thus, if the allele frequency is known
or can be externally estimated, the equations
defined by (4) for i ¼ 1; 2 and g ¼ 0; 1 yield four
equations in the four cause-specific hazard func-
tions: ligðtÞ, i ¼ 1; 2; g ¼ 0; 1. Since rigðtÞ in Equa-
tion (4) can be directly estimated from kin-cohort
data, these are four equations in four unknowns,
and hence have enough information to identify
the unknown functions ligðtÞ, i ¼ 1; 2; g ¼ 0; 1.
However, the above arguments do not constitute
a theoretical proof; they do provide the basic

intuition behind the identifiability of the cause-
specific hazard functions.
Various transformations of cause-specific

hazard functions are often of interest for the
presentation of data. One such transformation is
the ‘‘cumulative incidence function,’’ which can
be defined as

FigðtÞ ¼ 1� SigðtÞ ¼ 12exp �
Z t

0

ligðsÞds
� �

: ð5Þ

for event type i and genotype g. The cumulative
incidence function corresponds to the Kaplan-
Meier incidence curve in a standard survival
analysis setting. It is often described as the age-
specific penetrance function in the literature of
genetic epidemiology. The interpretation of the
cumulative incidence function as cumulative risk,
however, requires some caution. First, it requires
the assumption that the risks of the outcome of
interest and the competing/censoring event are
independent, conditional on the genetic mutation.
With this assumption, the cumulative incidence
function of an event can be interpreted as the
cumulative risk for that event in the hypothetical
population obtained by removing all competing
events, under the assumption that the removal of
competing events does not change the risk of the
event of interest. Because the cumulative risk
interpretation refers to a hypothetical state, typi-
cally it may be best to view the cumulative
incidence function, not as a cumulative risk, but
as a simple way of summarizing and standardiz-
ing cause-specific hazard rates. Such a summar-
ization can be useful for the comparison of age-
specific rates for different populations with
different age-distributions or/and different rates
of the competing events.

ESTIMATION

In principle, the equations given in (4) can be
iteratively solved to estimate the cause-specific
hazard functions of interest. One oddity is that
hazard estimates from these equations cannot be
guaranteed to be non-negative. We propose a
likelihood based estimation constrained to avoid
such anomalies.
We employ piecewise constant modelling of the

cause-specific hazard functions ligðtÞ; i ¼ 1; 2;
g ¼ 0; 1. For the ith event, let ftðiÞl gkiþ1

l¼0 denote a
set of knots appropriately chosen in the range of Ti

so that 0 ¼ t
ðiÞ
0 ot

ðiÞ
1 ot

ðiÞ
2 o . . .ot

ðiÞ
ki
ot

ðiÞ
kiþ1 ¼ 1. We

will assume that both li0ðtÞ (hazard for noncar-
riers) and li1ðtÞ (hazard for carriers) are piecewise,
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constant within intervals defined by ftðiÞl g
kiþ1

l¼0
. Let

the hazard parameters for carriers and noncarriers
in the corresponding ki þ 1 intervals be denoted

by flðiÞgl g
kiþ1

l¼0
, g ¼ 0; 1, respectively. This flexible

approach of piecewise constant modeling of
hazard functions can be nonparametric, in es-
sence, if we define the set of knot points for each
event to be the set of time points where at least
one event of the respective type has been
observed.
For estimation of hazard parameters in the

above model, we propose the use of a ‘‘composite
likelihood’’ approach that we defined earlier
[Chatterjee and Wacholder, 2001] for general kin-
cohort estimation. Earlier we had used the term
‘‘marginal likelihood’’ instead of ‘‘composite like-
lihood,’’ but since then, several readers noted that
the latter term was more accurate for our
methodology. In this approach, the likelihood
contribution of family history data of the relatives
of a volunteer is computed as the product of
the probabilities of the phenotype history of the
individual relatives, given the genotype of the
volunteers. The advantages of this approach
compared to the true likelihood of the data [Gail
et al., 1999a] that is based on the full joint-
probability distribution of the event histories of
the relatives in a family were described in
Chatterjee and Wacholder [2001].
Some further notation is needed to define the

composite-likelihood more formally. Let m denote
the number of probands, and G0i the genotype of
the ith proband. Suppose the ith volunteer reports
the family history of a phenotype Y for ni relatives.
Let Yij denote the value of Y for the jth relative of
the ith proband. With these notations in mind, the
composite-likelihood of the family history data of
the relatives can be defined as

Ym
i¼1

Yni
j¼1

pðYijjG0iÞ ¼
Ym
i¼1

Yni
j¼1

X1
g¼0

pðYijjGij ¼ gÞ

�PrðGij ¼ gjG0iÞ:
ð6Þ

On the left-hand side of Equation (6), pðYijjG0iÞ
denotes the marginal probability density (or mass
function) of the phenotype history of the jth
relative of the ith proband, given the genotype of
the ith proband. On the right-hand side, this
probability is computed as the weighted sum of

the probability density of the phenotype history of
the relative if the relative was a noncarrier
(Gij ¼ 0) and if the relative was a carrier
(Gij ¼ 1), with weights defined by the correspond-
ing probabilities of the relative being a noncarrier
and a carrier given the genotype of the volunteer.
Although Equation (6) does not define the true
likelihood of the data, the theoretical basis for its
validity follows from the fact that the score
equations (derivative of the log-likelihood) corre-
sponding to Equation (6) give an unbiased
estimating equation [Godambe, 1991].
With two competing events, the phenotype history

Y of a relative can be represented by a triplet of
observations Y ¼ ðT;D1;D2Þ. Here, T denotes the
time to the first of the two events, or censoring if
neither of the events occurred during follow-up, and
Dk; k ¼ 1; 2 denote the indicator of whether the
events E1 and E2 occurred or not, respectively. Here
D1 ¼ 1 and D2 ¼ 1 cannot occur simultaneously
because of the competing risk framework. The
composite-likelihood of the event history data of
relatives can be computed by replacing pðYijjGij ¼ gÞ
in Equation (6) with the corresponding likelihood for
competing risk data (e.g., Chapter 7 in Kalbfleisch
and Prentice, 1978), given by

l1gðTijÞD1ijl2gðTijÞD2ijS1gðTijÞS2gðTijÞ

where SigðtÞ; i ¼ 1; 2; g ¼ 0; 1 are defined in Equa-
tion (5).
We propose use of an EM algorithm for

maximization of the composite-likelihood with
respect to the hazard parameters. Although the
EM algorithm is traditionally used for maximum-
likelihood estimation in missing data problems, a
similar algorithm can be more generally applied
to any method that is based on unbiased estimat-
ing equations [e.g., Rosen et al., 2000]. In our
application, the E-step of the algorithm involves
computing the conditional probability of each
relative being a carrier and a noncarrier, given
their individual event history and the genotype of
the index proband. Let w0ij and w1ij denote the
corresponding probabilities of being a noncarrier
and a carrier, respectively, for the jth relative of the
ith proband. In each iteration of the EM algorithm,
these probabilities can be estimated from the
current estimate of the hazard functions, using
the formula

wgij ¼
l1gðTijÞD1ijl2gðTijÞD2ijS1gðTijÞS2gðTijÞPrðGij ¼ gjG0iÞP1

g0¼0 l1g0 ðTijÞD1ijl2g0 ðTijÞD2ijS1g0 ðTijÞS2g0 ðTijÞPrðGij ¼ g0 jG0iÞ
: ð7Þ
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The M-step of the algorithm obtains an estimate of
the hazard parameters given by the closed-form
formula

l̂l
ðlÞ
gk ¼

P
i;j N

ðlÞ
ijkwgijP

i;j PY
ðlÞ
ijkwgij

; g ¼ 0; 1;

k ¼ 1; . . . ;Kl; l ¼ 1; 2

ð8Þ

where PY
ðlÞ
ijk denotes the number of person years

the ith relative of the jth proband contributes to
the age interval ½tðlÞk ; t

ðlÞ
kþ1Þ; andN

ðlÞ
ijk denotes the

indicator of whether or not the relative has an
event of type l in that interval. Iterating between
the E-step and the M-step of the algorithm, until
convergence yields the final estimates of hazard
parameters.
In other words, each step of the EM algorithm

involves estimating the cause-specific hazard
rates for different age intervals in carriers and
noncarriers by using a ‘‘number of events per
person-year’’ formula (Equation 8) that is com-
monly used for standard cohort analysis. The
genotype of relatives being unknown, the events
and person years corresponding to a relative
cannot be assigned as a whole to either carrier
or noncarrier. Instead, the events and person years
for each relative are divided between carrier
and noncarrier according to the conditional prob-
ability of the relative being a carrier and a
noncarrier, given the event history of the relative
and the genotype of the index proband. Computa-
tion of these conditional probabilities (wgij),
as shown in Equation (7), involves the hazard
parameters themselves. Thus, the final estimates
of hazard parameters are obtained by iterative
use of Equation (8), where at each iteration,
the conditional probabilities (wgij) are up-
dated using Equation (7), based on the estimates
of hazard parameters from the previous
iteration.

ASYMPTOTIC THEORY AND VARIANCE
ESTIMATION

For parametric/fixed-knot piecewise exponen-
tial models, the consistency (asymptotic unbiased-
ness) of the composite-likelihood estimation
method follows from standard estimating equa-
tion theory (Godambe, 1991). For nonparametric
models that allow a knot at each observed event
time, although similarly consistent results can be
expected to hold, a rigorous proof is not yet
available. In simulation experiments (below),
when we evaluate the performance of the non-

parametric estimation method on simulated data,
the method is found to perform very well, even
for quite a small sample size (see Fig. 2). In
practice, one can use the nonparametric method
for exploratory purposes, and then select a
suitable parametric model such as a piecewise
exponential model with fixed knots for formal
inference. In this approach, the adequacy of a
parametric model can be tested by comparing
estimates of the quantities of scientific interest
from the parametric model against those from the
nonparametric approach.
To assess uncertainty in the estimates, in

principle, one can use estimating-equation-based
variance estimators such as the so called robust-
sandwich method that is widely used in the
generalized estimating equation (GEE) literature
(Liang et al., 1992). Although these methods
known to work well for parametric models, their
performance in a nonparametric setting has not
been well-studied. In our data application, we
used a bootstrap-based resampling method [Efron
and Tibshirani, 1998] that is known to perform
well for both parametric and nonparametric
models. To account for possible familial correla-
tion between the relatives of the same proband,
we use families as bootstrap sampling units. If
there are M unique families corresponding to M
probands in the study, in each bootstrap sample,
we draw M families with replacement from the
total set of M families. Once a bootstrap sample of
families is chosen, the proposed method is used to
obtain bootstrap estimates of the parameters. The
empirical percentiles for bootstrap estimates over
different bootstrap samples are used to define the
confidence intervals for the parameter estimates.

DATA EXAMPLE

We consider an application of the proposed
method, using data from the Washington Ashke-
nazi Study (WAS). Based on these data, we
previously reported estimates of age-specific
cumulative risk of ovarian cancer among
BRCA1/2 mutation carriers and noncarriers
[Struewing et al., 1997; Chatterjee and Wacholder,
2001]. In these analyses, it was assumed that the
goal was to estimate the risk of any ovarian cancer,
irrespective of whether the cancers followed a
previous breast cancer or not. Thus, history of
breast cancer among relatives was ignored. An
alternative strategy for analysis of these data
could be to estimate the risk of first ovarian
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cancer, i.e., the risk of ovarian cancer in the
absence of previous breast cancer. If the etiology
of ovarian cancer changes after the onset of breast
cancer, e.g., due to treatment or/and change in
lifestyle, the risk of first ovarian cancer may be
different from that of any ovarian cancer. Such a
distinction in the interpretation of risk can be
particularly important for BRCA1/2 mutation
carriers, since a large fraction of them are expected
to develop breast cancer in their lifetime.
Table I shows the number of breast and ovarian

cancer cases among female first-degree relatives
of relatives of the WAS participants. We estimated
the risk of first ovarian and first breast cancer by
considering breast and ovarian cancers to be
censoring/competing events for each other. For
both events, we used nonparametric piecewise
exponential models for the hazard functions that
allow one knot at each age value where at least
one event of the respective type was observed. We
estimated BRCA1/2 allele frequency as 0.0112,
based on the genotype data of the study partici-
pants. We obtained confidence intervals (CI) for
parameter estimates, based on 500 bootstrap
samples.
Table II shows the cause-specific hazard esti-

mates for ovarian cancer in BRCA1/2 mutation
carriers in the absence of breast cancer. In Table II,
the adjusted estimates are obtained by the
proposed methodology that accounts for the fact
that the competing risk of breast cancer is related
to BRCA1/2 mutations. The unadjusted estimates,
on the other hand, are obtained by ignoring the
relationship between breast cancer and BRCA1/2
mutations. We observe that adjustment due to the

competing risk of breast cancer was important for
interval risk estimation for both of the age
categories 40–50 and 50–60. Figure 2 shows the
corresponding estimated age-specific cumulative
incidence function (see Equation 5 for definition).
Figure 2 shows a substantial difference in the
adjusted and unadjusted estimates of lifetime
cumulative incidence. The adjusted estimate of
the cumulative incidence function up to age
70 was 0.144 (95% CI, 0.041–0.226), about 33%
larger than the corresponding unadjusted
estimated of 0.109 (95% CI, 0.032–0.159). We note
that the adjusted estimate of lifetime cumulative
incidence of first ovarian cancer was very close
to the corresponding cumulative incidence
estimate of any ovarian cancer that was pre-
viously reported (Struewing et al., 1997), based on
the same data. This suggests that in our data, the
risk of ovarian cancer due to BRCA1/2 mutations
was similar before and after the onset of breast
cancer.
In the context of this example, insight may be

obtained by consideration of the proper interpre-
tation of cumulative incidence. We estimated the
lifetime (up to age 70) cumulative incidence of
ovarian cancer among BRCA1/2 carriers to be
about 14.4%. This estimate summarizes the age-
specific rate of ovarian cancer in the absence of
prior breast cancer among BRCA1/2 mutation
carriers, and is useful for comparing our results
with other studies. Interpretation of the estimate
of the cumulative incidence as a cumulative risk,
however, requires the additional assumption that
the risks of breast and ovarian cancer are
independent of each other among carriers of
BRCA1/2 mutations. Even when the assumption
holds, the estimate of 14.4% would correspond to
the cumulative risk of ovarian cancer for carriers
only in the hypothetical state in which carriers
have no risk of breast cancer, either from BRCA1/
2 mutations or from other causes. Given that the
risk of breast cancer is very high for BRCA1/2
mutation carriers, the cumulative risk estimate
could be directly applicable only for women who
have some kind of intervention (e.g., bilateral
mastectomy) that removes most or all of the risk of
breast cancer but does not change the risk of
ovarian cancer. Due to this restricted interpreta-
tion, cumulative incidence function should not
typically be used for clinical risk prediction, for
which other measures such as cumulative inci-
dence in the presence of competing causes
[Prentice et al., 1978; Gail et al., 1989] can be more
useful.

TABLE I. Distribution of breast cancer and ovarian
cancer cases in relatives of WAS participantsa

Any BC First BC Any OC First OC

Relative of noncarriers
(N¼12,980)

982 976 119 111

Relatives of carriers
(N¼305)

58 58 11 7

aBC, breast cancer; OC, ovarian cancer.

TABLE II. Cause-specific hazard of ovarian cancer in
carriers of BRCA1/2 mutations integrated in three age
intervals

Unadjusted estimate
(95% CI)

Adjusted estimate
(95% CI)

r40 0.011 (0.000, 0.028) 0.011 (0.000, 0.026)
40–50 0.029 (0.000, 0.061) 0.036 (0.000, 0.080)
50–60 0.075 (0.000, 0.127) 0.107 (0.000, 0.190)
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SIMULATION EXPERIMENTS

ESTIMATING RISK OF OVARIAN CANCER IN
ABSENCE OF BREAST CANCER

We use simulation experiments to evaluate the
performance of the proposed composite-likeli-
hood method for estimation of the true (known)
hazard and the cumulative incidence functions. In
the first simulation, we generated data in a setting
similar to the data application we described in the
data example (above). We use an allele frequency
of 0.0112 to generate the mutation status for 5,000
probands. Given the mutation status of the
probands, we generate the mutation status for
two first-degree relatives, say a mother and a
sister, based on a Mendelian mode of inheritance.
We assume that the mutation status of the
relatives is unknown during analysis of the data.
Times to onset of breast and ovarian cancers for
the relatives are generated from Weibull distribu-
tions, using parameter values such that the
cumulative risks of these diseases until ages 50
and 70 correspond to those we reported pre-
viously [Chatterjee and Wacholder, 2001]. Specifi-
cally, for describing breast cancer risk, we choose
the shape and the scale parameter of the Weibull
distribution to be 0.0078 and 3.2893, respectively,
for noncarriers, and 0.0130 and 2.1334, respec-
tively, for carriers. For describing ovarian cancer
risk, we chose the corresponding shape and the
scale parameters to be 0.0051 and 4.0051, respec-
tively, for noncarriers, and 0.0081 and 2.9837,
respectively, for carriers. Following the mechan-
ism of censoring in the Washington Ashkenazi
Study, we assume that relatives can be censored
either at their death from other causes, or at the
time of the interview of the proband. For both
carrier and noncarrier relatives, we generate age at
mortality from a normal distribution that has a
mean age of 81 and standard deviation of 10. We
generate current age (age at the time of the
interview of the proband) for relatives using
normal distribution, with mean age 70 for mothers
and 50 for sisters, and a common standard
deviation of 10.
We simulate 100 data sets in the above setting.

Similar to the data example (above), we assume
that our goal is to estimate the risk of ovarian
cancer in the absence of breast cancer. Thus, we
treat onset of breast and ovarian cancer as
censoring/competing events for each other. We
analyzed each data set, using the nonparametric
version of the piecewise exponential hazard

model that allows one knot at each age value
where at least one event of the respective type is
observed in the data. We assume that the allele
frequency is known.
Figure 2 shows estimate and true values for the

cause-specific hazard and cumulative incidence
functions for ovarian cancer in the carriers of the
mutation. The solid line in Figure 2 shows the true
(known) hazard/cumulative-incidence function
corresponding to the underlying Weibull distribu-
tion for the carriers. The dashed line in Figure 2
shows the corresponding mean of the nonpara-
metric estimates of the hazard/cumulative inci-
dence function, adjusted for competing risk using
the methods developed in this paper. The dotted
line in Figure 2 shows the estimate of the
corresponding functions, ignoring the effect of
the mutation on the competing event of breast
cancer. As the nonparametric estimates of hazard
functions tend to be very irregular (discontinu-
ous), we plot the hazard estimates after smoothing
them, using a moving average method that allows
for a 10-year window.
From Figure 2, we observe that ignoring the

effect of the mutation on competing risk caused a
very significant bias for both the hazard and the
cumulative incidence estimation. For both of these
functions, the bias seems to be more important for
older ages than for younger ages. The proposed
method, which adjusts for competing risk, on
average estimates the true cumulative risk and
hazard functions with very minimal bias. Given
the fact that in our setting the expected number of
ovarian cancer cases in the relatives of carriers is
quite small (typically less than 10), our nonpara-
metric estimation method seems to perform quite
well, even with a small sample size.

ESTIMATING RISK OF MORTALITY IN
ABSENCE OF BREAST CANCER

Since the research is originally motivated by the
goal of estimating the risk of mortality from
BRCA1/2 mutations in the absence of known
BRCA1/2-related cancers, we considered a second
simulation study where we allowed the risk of
mortality from other causes to be associated with
the mutation. We generate data using the exact
same setup as above, except that now we assume
the mean age at mortality from other causes to be
smaller for carriers than for noncarriers (73 vs. 81).
Since estimating risk of mortality in the absence of
breast cancer is of interest, we treat breast cancer
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as a censoring/competing event for mortality and
vice versa.
Figure 3 shows the estimate and the true values

for the hazard and the cumulative incidence
function of mortality in the carriers of the
mutation. Clearly, ignoring the effect of the
mutation on the competing risk of breast cancer
causes noticeable bias, and after adjustment, the
bias becomes much smaller. However, considering
the fact that the competing event of breast cancer
is strongly related to the mutation, the magnitude
of the bias in the unadjusted estimate does not
seem too great. This is likely related to the fact that
in our simulation, (which is based on the real
study setting), the most dramatic effect of
BRCA1/2 mutations on the risk of breast cancer
exists at younger ages (r60). The risk of mortality,
on the other hand, is prominent at old ages (460),
and thus the estimation of risk of mortality,
overall, is not very severely affected.

CONCLUSIONS

One advantage of the cohort design is its ability
to study the etiology of multiple diseases. In

certain settings, the kin-cohort design provides an
attractive alternative to classical prospective co-
hort designs, as follow-up data on the cohort
members of this design (i.e., the relatives) are
collected very rapidly in a retrospective fashion
through volunteers. For standard cohort data, it is
well-known that for studying the etiology of a
disease, one can ignore the censoring mechanism
by assuming that the risks of the disease and
censoring events are conditionally independent,
given the exposures of interest. For a kin-cohort
design, however, the censoring mechanism cannot
be ignored, even if the independent censoring
assumption holds, conditional on the mutation
status of the relatives.
In kin-cohort analysis, estimation and interpre-

tation of parameters while studying the effect of a
gene depend on proper accounting for any other
competing events that may be strongly influenced
by the same gene. In general, the methods
developed in this paper can be used to estimate
the cause-specific hazards for different types of
events without any assumption on the correlation
between competing events. Based on these esti-
mates, one can also compute other measures of
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Fig. 2. Results from simulation experiments: Bias in estimation of age-specific hazard (above) and cumulative incidence (below) of

ovarian cancer. Solid curves show hazard/cumulative-risk functions corresponding to true underlying Weibull distribution. Dotted
lines show mean of estimates over 100 simulated data, when effect of mutation of risk of breast cancer is ignored. Dashed line shows

corresponding mean estimates when effect of mutation on risk of breast cancer is accounted for, using method developed in this paper.

Plots for hazard estimates are obtained after smoothing original estimates, using a moving average method that allows for 10-year

window.
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risks, such as the cumulative incidence functions
of the individual events in the presence of other
events [Prentice et al., 1978; Gail et al., 1989], that
are popularly used in the competing risk litera-
ture. Finally, although in this paper we focus on
the kin-cohort setting, the proposed methodology
can be used more generally for other types of
cohort studies, where genotype information for
some cohort members may be missing by design
or by happenstance.
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APPENDIX

Here we derive Equation (4). We will use i ¼ 1
as an example. By Bayes’ rule of conditional
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Fig. 3. Results from simulation experiments Bias in estimation of age-specific hazard (above) and cumulative incidence (below) of
mortality. Solid curves show hazard/cumulative-risk functions corresponding to true underlying normal distribution. Dotted line

shows mean of estimates over 100 simulated data, when effect of mutation on risk of breast cancer is ignored. Dashed line shows

corresponding mean estimates when effect of mutation on risk of breast cancer is accounted for, using method developed in this paper.
Plots for hazard estimates are obtained after smoothing original estimates, using a moving average method that allows for 5-year
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probability, we can write

In the third step of the above calculations, we
implicitly assumed PrðT1;T2jG ¼ g0;G0 ¼ gÞ ¼
PrðT1;T2jG ¼ g0Þ, i.e., given the relative’s own
genotype, the joint risk of two events in the
relative does not depend on the genotype of the

proband. The proof of Equation (4) now follows
by noting that in the product expression in the last
line of above equations, the first term is l1gðtÞ (see
Equation 2) and the second term is PrðG ¼ g0jT1 �
t;T2 � t;G0 ¼ gÞ (by Bayes’ rule).

r1gðtÞ ¼ lim
dt#0

1

dt
Pr T1 2 t; tþ dt½ ÞjT1 � t;T2 � t;G0 ¼ gf g

¼ lim
dt#0

1

dt
Pr T1 2 t; tþ dt½ Þ;T2 � tjG0 ¼ gf g

Pr T1 � t;T2 � tjG0 ¼ gf g

¼ lim
dt#0

1

dt

P
g 0 Pr T1 2 t; tþ dt½ Þ;T2 � tjG ¼ g0f gPrðG ¼ g0jG0 ¼ gÞP

g 0 0 Pr T1 � t;T2 � tjG ¼ g00f gPrðG ¼ g00jG0 ¼ gÞ

¼
X
g0

lim
dt#0

1

dt
Pr T1 2 t; tþ dt½ Þ;T2 � tjG ¼ g0f g

Pr T1 � t;T2 � tjG ¼ g0f g

� �

� Pr T1 � t;T2 � tjG ¼ g0f gPrðG ¼ g0jG0 ¼ gÞP
g00 Pr T1 � t;T2 � tjG ¼ g00f gPrðG ¼ g00jG0 ¼ gÞ :
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