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Two-phase strati� ed sampling designs yield ef� cient estimates of population parameters in regression models while minimizing the costs
of data collection. In measurement error problems, for example, error-free covariates are ascertained only for units selected in a validation
sample. Estimators proposed heretofore for such designs require all units to have positive probability of being selected. We describe a
new semiparametric estimator that relaxes this assumption and that is applicable to, for example, case-only or control-only validation
sampling for binary regression problems. It uses a weighted empirical covariate distribution, with weights determined by the regression
model, to estimate the score equations. Implementation is relatively easy for both discrete and continuous outcome data. For designs
that are amenable to alternative methods, simulation studies show that the new estimator outperforms the currently available weighted
and pseudolikelihood methods and often achieves ef� ciency comparable to that of semiparametric maximum likelihood. The simulations
also demonstrate the vulnerability of the case-only or control-only designs to model misspeci� cation. These results are illustrated by the
analysis of data from a population-based case-control study of leprosy.
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1. INTRODUCTION

Two-phase designs, introduced originally by Neyman
(1938) as a technique for strati� cation, are currently used
to estimate regression parameters ‚ in a model f‚4y—x1 z5,
where y is a response variable and x and z are covariates. At
phase one, N subjects with random variables 4Yi1Xi1Zi5

N
iD1 are

sampled at random from a population described by the joint
density f‚4y—x1 z5dG4x—z5dH4z51 where G and H denote
arbitrary (nonparametric) conditional and marginal covariate
distributions. Yi and Zi are observed for all N subjects, but Xi

is observed only for those in a phase-two subsample selected
according to a random mechanism. Let Ri denote the indica-
tor of whether 4Ri D 15 or not subject i is selected at phase
two. We assume that 4Ri1 Yi1Xi1Zi51 i D 1 : : : N , are iid ran-
dom vectors and that

P4R D 1—Y 1X1Z5 D P4R D 1—Y 1Z5 ² � 4Y 1 Z53 (1)

that is, the X’s are missing at random in the sense of Rubin
(1976). Such designs are used in complex survey sampling
(e.g., Skinner, Holt, and Smith 1989, sec. 1.6), where a � nite
population drawn from the superpopulation model 4f‚1 G1 H5
constitutes the “phase-one sample,” in validation sampling for
measurement error problems (Carroll, Ruppert, and Stefanksi
1995, sec. 9) and in strati� ed case-control sampling in epi-
demiology (Breslow 1996).

If Xi were known for all subjects, then maximum likelihood
estimation of ‚ would involve solving the score equations

O D U 4‚5 D
NX

iD1

S‚4Yi—Xi1 Zi5 ²
NX

iD1

¡ logf‚4Yi—Xi1 Zi5

¡‚
0 (2)
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When data are missing, the scores are replaced by their con-
ditional expectations given the data that are observed. Such
maximum likelihood techniques have been described for esti-
mation of parameters in fully parametric models for complex
survey data, including two-phase designs (Breckling, Cham-
bers, Dorfman, Tam, and Welsh 1994). But misspeci� cation
of the parametric covariate distribution can lead to inconsis-
tent estimates of the regression parameters (Pepe and Flem-
ing 1991). Semiparametric ef� cient inference (Robins, Hsieh,
and Newey 1995) alleviates this problem, but may be dif� cult
to implement. When the outcome Y is continuous, it involves
numerical solution of an in� nite-dimensional integral equa-
tion. As far as we know, semiparametric ef� cient inference has
been fully implemented only when Y (and often also Z) is dis-
crete (Robins, Rotnitzky, and Zhao 1994; Robins et al. 1995;
Breslow and Holubkov 1997; Scott and Wild 1997). Law-
less, Kalb� eisch, and Wild (1999) recommended discretization
of continuous phase-one data to achieve an easily calculable
maximum pro� le likelihood estimator. As we show later, how-
ever, such data reduction can itself entail a substantial loss of
ef� ciency.

In view of the computational complexity of ef� cient infer-
ence, most applications to date have involved simpler, inef-
� cient methods. One strategy is to recognize that for � xed
‚, the ef� cient score (2) is a � nite population sum. Hence it
may be estimated from the phase-two sample by inverse prob-
ability weighting based on � (Horvitz and Thompson 1952;
Cochran 1977, sec. 9). Skinner et al. (1989, sec. 3.4.4) pre-
sented a discussion of this strategy related to survey sampling,
and Flanders and Greenland (1991) explored applications to
epidemiology. A second approach is to consider the “complete
data likelihood” generated by the weighted distributions of
the phase-two observations, conditional on the event that they
were sampled at phase two. Authors who have investigated
this approach include Breslow and Cain (1988) for applica-
tions to case-control studies, Krieger and Pfeffermann (1992)
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for sample surveys, and Carroll et al. (1995, sec. 9) for mea-
surement error problems. Finally, some authors have used the
fact that when G is known, the likelihood contribution for a
subject with missing X is obtained by integrating the usual
likelihood using dG4x—Z5. An estimated likelihood or, equiva-
lently, an estimated score is obtained by substituting an empir-
ical version of G (Pepe and Fleming 1991; Carroll and Wand
1991; Hu and Lawless 1997). Breslow and Chatterjee (1999)
and Lawless, Kalb� eisch and Wild (1999) evaluated the ef� -
ciency of various pseudo-likelihood methods relative to the
fully ef� cient SPMLE methods when both Y and Z are dis-
crete.

We propose a new type of estimated likelihood score,
the pseudoscore (PS), which uses the postulated parametric
regression model to provide a smoother, consistent estimate
of G and consequently improves the ef� ciency of estimation
of ‚. When Z is discrete (which is assumed in much of what
follows), the new method is computationally simple for both
discrete and continuous outcomes. An interesting feature of
the PS estimator is that it may be applied in restricted sit-
uations where other estimators cannot. Most formulations of
the two-phase sampling problem include the requirement that
each individual selected at phase one has a positive probability
of being sampled at phase two. Practical considerations, how-
ever, may preclude obtaining validation samples for subjects
with certain outcomes. In case-control studies, for example, if
invasive medical tests are required to accurately measure the
covariate, then controls may be unwilling to participate at the
validation stage.

The PS estimator may be applied with such restricted
designs, provided that subjects with any possible combination
of 4X1Z5 values have a positive probability of representation
at phase two. Other semiparametric methods of which we are
aware cannot be applied. Of course, the lack of validation
subjects with certain Y values means that there is only lim-
ited facility for model checking using study data alone. Thus,
although restricted designs should ordinarily be avoided, the
PS estimator provides the investigator willing to make the
necessary model assumptions with the � exibility to use them
when necessary.

Section 2 presents the new system of estimating equations
and an iteratively reweighted regression algorithm that may
be used to solve them using standard software packages. It
also gives the asymptotic properties of the estimator. Section 3
reports the results of simulation experiments that evaluate the
small-sample behavior of the proposed method, compare its
ef� ciency with alternative methods, and study its robustness
under model misspeci� cation. Section 4 demonstrates the new
method using data from a case-control study of leprosy. The
� nal section discusses the advantages and limitations of the
PS estimator and mentions some possible extensions.

2. METHODS

2.1 The Pseudoscore Function

We start with the assumption that Z, the vector of phase-
one covariates known for everyone, is discrete. Although the
PS function is well de� ned more generally, its estimation for
continuous Z would require nonparametric regression meth-
ods. This generalization will be pursued elsewhere.

The joint probability law of the data vector 4R1 Y 1X1 Z5 for
the just-described problem is governed by the four parameters
4‚1 � 1G1 H5, some of which may be in� nite dimensional. We
denote the true values by 4‚01� 01G01H05, the corresponding
probability law by P0, and expectation under P0 by E0. We
assume that in a neighborhood of the true parameter values
4‚01 � 05,

(A)
Z

� 4y1Z5 dy > 0 and (B) f‚4Y —X1 Z5 > 0 (3)

almost surely for all 4Y 1X1Z5 in the sample space. Condition
A is weaker than requiring � 4y1 z5 > 0 everywhere. It ensures
that for each value of z, � 4y1 z5 > 0 for at least one value of
y if y is categorical and in an interval of y if y is continuous.
This, together with condition B, further ensures that

q�
‚ 4X1Z5²P4RD1—X1Z5D

Z
� 4y1Z5f‚4y—X1Z5dy >0 (4)

almost surely.
For � xed G, the (conditional) likelihood of the observable

data is proportional to

L4‚3G5 D
Y

i2V

f‚4Yi—Xi1Zi5
Y

j2SV

Z
f‚4Yj —x1Zj5 dG4x—Zj51 (5)

where V D 8i 2 Ri D 19 denotes the validation or phase-two
sample. Assuming that the scores [see (2)] and the integrals
to follow all exist, the score function is

S4‚3G5 D
¡ logL4‚3G5

¡‚
D

X

i2V

S‚4Yi—Xi1Zi5

C
X

j2SV

R
S‚4Yj —x1Zj 5f‚4Yj —x1Zj5 dG4x—Zj5R

f‚4Yj —x1Zj 5 dG4x—Zj5
0 (6)

An estimate of G4¢—z5 can be substituted into (6) to esti-
mate the score function. Such an estimate generally cannot be
obtained directly from the validation data, however, due to the
biased sampling. What one can obtain directly are estimates of
the conditional distributions P4X—z1 R D 15, hereafter denoted
G ü 4¢—z5. Speci� cally, the empirical estimate

GN 4x—z5 D
P

i I6Xiµx1 ZiDz1 RiD17P
i I6ZiDz1 RiD17

1 (7)

where IA denotes the indicator function of the event A, is con-
sistent for G ü

04x—z5. When the selection probabilities � depend
only on z (Pepe and Fleming 1991), or when f‚0

4y—x1 z5 is
free of x, G ü

0 D G0. Otherwise, G ü
0 6D G0, and naively substi-

tuting GN for G will produce a biased estimate of the score
function. Some modi� cations of (7) are therefore needed to
accommodate the general situation.

From Bayes’s theorem, when P4R D 1—X1 Z5 > 0 almost
surely,

dG4x—Z5 D
dP4X µ x—Z1 R D 15P4R D 1—Z5

P4R D 1—X D x1 Z5
0 (8)
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Substituting the right side of (8) for dG in (6) yields the PS
function

SPS4‚3 G ü 1� 5 D
X

i2V

S‚4Yi—Xi1 Zi5

C
X

j2SV

R
S‚4Yj —x1Zj5h

�
‚ 4Yj1 x1Zj5 dG ü 4x—Zj5R

h�
‚ 4Yj1 x1Zj5 dG ü 4x—Zj5

1 (9)

where

h�
‚ 4y1 x1 z5 D

f‚4y—x1 z5

q�
‚ 4x1 z5

0

Although G ü implicitly depends on ‚ and � , we � x G ü D
G ü

0 and propose estimating G ü
0 directly using GN . Unbiased-

ness of the PS function follows, because at the true param-
eter values (‚ D ‚01G ü D G ü

01� D � 0), it equals the like-
lihood score. It is not a true score function, however, in
the sense that there is no associated log-likelihood or log-
pseudolikelihood whose ‚ derivative is given by (9). This
follows from the classical theory of the calculus because, as
discussed later, ¡SPS4‚3G ü 1 � 5=¡‚T is in general an asym-
metric matrix. For the PS function to be unbiased, the full
distribution of 6Y —X1 Z7 must be speci� ed correctly through
the model f‚4Y —X1 Z5. Whereas for most standard regression
models, the score function S‚4Y —X1Z5 involves only a few
lower-order moments of the distribution of 6Y —X1 Z7, computa-
tion of h�

‚ 4y1x1 z5 in the PS function involves the full density
function f‚4Y —X1Z5. This could be a particularly important
issue for continuous outcomes, because different choices of
f‚4Y —X1 Z5 may give rise to the same lower-order moments.
In limited simulations (see sec. 3.3), however, we found that
the PS method was quite robust for regression inference on
lower-order moments even when the full distribution was mod-
erately misspeci� ed.

2.2 Estimation

By substituting GN for G ü in expression (9), we obtain the
estimating function

SPS4‚3 GN 1� 5 D
X

i2V

S‚4Yi—Xi1 Zi5

C
X

j2SV

X

i2V

S‚4Yj —Xi1 Zj5h
�
‚ 4Yj 1Xi1Zj5I 4Zj D Zi5P

l2V h�
‚ 4Yj1Xl1Zj5I 4Zj D Zl5

0 (10)

Provided that � D � 0 is known (as it generally will be in a
two-phase study), one can estimate ‚ by solving the equations
SPS4‚3 GN 1� 05 D 0. Whether or not � 0 is known, however, we
propose to replace it by a consistent estimate O� from a correct
model, because this results in more ef� cient estimates of the
regression parameters (Pierce 1982; Robins et al. 1994). It is
common practice to model P4R D 1—Y 1 Z5 D � 4Y 1Z5 paramet-
rically (by, e.g., logistic regression) and to estimate the cor-
responding regression parameters from the data on 4R1 Y 1Z5.
When both Y and Z are discrete, one can use a saturated
model for � , in which case the O� are the observed sampling
fractions.

The estimating equations de� ned by SPS4‚3 GN 1 O� 5 D 0
can be solved by a standard Newton–Raphson algorithm. But
the form of (10) immediately suggests the following iterated

reweighting algorithm, which gives better insight into the new
approach:

1. Start with an initial estimate ‚0 and call it the current
value ‚c .

2. Use the units in the validation sample V as they are.
For each j 2 SV , construct a set of � lled-in data, 84Yj1 Xi1 Zj5,
i 2 VZj

9, where VZj
denotes the subset of validation units with

Z D Zj .
3. For each � lled in observation 4Yj1 Xi1 Zj5j2SV 1 i2VZj

calcu-
late an associated weight wji4‚c5 de� ned by

wji4‚c5 D
h O�

‚c
4Yj1 Xi1 Zj5P

`2VZj
h O�

‚c
4Yj1X`1 Zj5

0

4. Obtain a new current estimate ‚c by � tting the para-
metric regression model to the combined set of data (i.e., the
original data for the validation sample and the � lled-in data
for the nonvalidation sample), using a program that allows for
prior weights. Assign weights of unity to the validation data
and weights as de� ned earlier to the � lled-in data. For pop-
ular regression models, such as logistic or linear regression,
standard software can be used at this step.

5. Repeat steps 3 and 4 until convergence.

It is easy to see that if the algorithm converges, it converges to
a solution of SPS4‚3 GN 1 O� 5 D 0. Proposition 1 in Section 2.5
states that under certain regularity conditions, the PS esti-
mating equations have a unique consistent sequence of solu-
tions. Chatterjee (1999) showed that under additional regular-
ity conditions and starting from a known consistent estimate,
the iterated reweighted algorithm converges to this consistent
solution. In simulations we have found that, except for some
nonidenti� able situations that arise with restricted designs, this
algorithm always converges to a unique solution irrespective
of the starting value. Proof of such global convergence is not
available, however. In contrast, the Newton–Raphson algo-
rithm occasionally fails to converge, even with good starting
values and appropriate scaling.

Regardless of which algorithm is used, computation of the
quantities q�

‚ 4Xi1 Zj5 is needed at each iteration. When Y is
categorical, integration is simply replaced by summation in
(4). When Y is continuous, evaluation of the integrals may
involve some work, depending on the form of � 4y1 z5 and
f‚4y—x1 z5. For the two-phase strati� ed design, however, the
task may be simpli� ed. For example, when Y is continuous
and univariate, the phase-two sampling typically strati� es on
class intervals of Y . Suppose that for Z D z, the range of Y is
partitioned into the disjoint intervals 8I14z51 : : : 1 IM 4z59 and
that � 4y1 z5 D �m4z5 if y 2 Im4z5, m D 11 : : : 1M . Then

Z
� 4y1 z5f‚4y—x1 z5dy

D
MX

mD1

� m4z56F‚8bm4z5—x1 z9ƒ F‚8am4z5—x1 z971

where bm4z5 and am4z5 are the upper and lower endpoints of
Im4z5 and F‚4y—x1 z5 is the cumulative distribution function
corresponding to f‚4y—x1 z5. Thus the PS method is easy to
implement for two-phase strati� ed samples involving either
continuous or discrete outcomes.
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2.3 Comparison With the Horvitz–Thompson
Estimator of G

Comparison of the proposed PS approach with two closely
related methods provides further insight. One alternative is
to directly estimate the scores (6) by substituting for G the
weighted (Horvitz–Thompson) empirical distribution function

GHT
N 4� 05 D

P
i2V I6Xiµx1ZiDz7=� 04Yi1 Zi5P

i2V I6ZiDz7=� 04Yi1Zi5
0 (11)

Horvitz–Thompson estimators are common in survey data
analysis, having been used to estimate a distribution function
(Rao et al. 1990), for example. When the sampling weights
are highly variable, however—as will be the case for an
ef� cient two-phase design—the weighted estimator typically
has a large variance (Pfeffermann 1996; Korn and Graubard
1999, sec. 4.4). Simulation studies reported herein show that
imprecise estimation of the nuisance parameter G using this
approach can cause serious loss of ef� ciency in estimation
of ‚. The estimating function that we propose in (10) can
also be viewed as an estimate of the score function (6)
obtained by substituting a weighted empirical estimator for
G. It exploits the regression model f‚4y—x1 z5, however, to
de� ne a more ef� cient set of weights. Because h�

‚ 4Y 1X1Z5 D
f‚4y—x1 z5=q�

‚ 4X1 Z5 in (10), 1=q�
‚ 4X1Z5 can be viewed as a

new set of inverse probability weights for estimating G4X—Z5
from the validation data for use in (6). Furthermore, because
q�

‚ 4X1 Z5 D P4R D 1—X1Z5 D E8� 4Y 1 Z5—X1Z9, one would
expect the new set of weights to be less variable, and
hence more ef� cient, than the Horvitz–Thompson weights
1=� 4Y 1Z5.

2.4 Comparison With the Mean Score Estimator

The contribution of nonvalidation subjects to the score
(6) is E8S‚4Y —X1 Z5—Y 1Z9. For the situation where both
Y and Z are discrete, Reilly and Pepe (1995) proposed
estimating E8S‚4Y —X1 Z5—Y 1Z9 for an incomplete unit byR

S‚4Y —x1Z5dPN 4x—Y 1Z5, where PN 4¢—Y 1Z5 is the empirical
distribution of 6X —Y 1Z7 in the validation sample. Their purely
empirical “mean score” approach is valid because 6X—Y 1Z7 D
6X—Y 1Z1 R D 17. However, it ignores the fact that the distri-
bution of 6X—Z1 Y 1 R D 17 is partially determined by the para-
metric model. More explicitly,

dP4X—Y 1 Z1 R D 15 D
dP4Y —X1 Z1 R D 15 dG ü 4x—Z5R
dP4Y —x1Z1 R D 15 dG ü 4x—Z5

1

where dP4Y —X1Z1 R D 15 is related to the regression model
and the selection probabilities by the formula

dP4Y —X1 Z1 R D 15 D
� 4Y 1 Z5f‚4Y —X1 Z5

R
� 4y1 Z5f‚4y—X1Z5 dy

² f �
‚ 4Y —X1 Z50

Thus one would expect to gain ef� ciency by estimating
only P4X—Z1 R D 15 empirically, determining the remain-
der of P4X—Y 1Z1 R D 15 from the model. This is precisely
what the PS (9) accomplishes. Note that � 4y1 z5h�

‚ 4y1 x1 z5 D
f �

‚ 4y—x1 z5 and that � 4y1 z5 may be inserted in both numer-
ator and denominator of the contributions of nonvalidation
subjects without affecting (9). The density of 6Y —X1 Z7 in the

validation sample, f �
‚ 4y—x1 z5, de� nes the “complete-data like-

lihood” used elsewhere as a basis for estimation (Breslow and
Cain 1988; Krieger and Pfeffermann 1992; Carroll et al. 1995,
sec. 9).

2.5 Asymptotic Properties

Some additional notation will be useful to describe the
asymptotic properties of the new estimator. De� ne ëN 4‚3G ü

0,
� 05 D SPS4‚3 G ü

01� 05=N 1ë 4‚3 G ü
01� 05 D E0ëN 4‚3 G ü

01� 05,
ë‚4‚1G ü

01� 05 D ¡ë 4‚3 G ü
01� 05=¡‚1 S‚01G0

4y—z5 D E08S‚0
4y—

X1z5—y1 z9, and D4y1 x1 z5 D S‚0
4y—x1 z5ƒ S‚01G0

4y—z5. Assum-
ing suf� cient regularity to allow interchange of expectation
and differentiation, some calculation gives ë‚4‚01 G ü

01� 05 D
ƒ©‚4‚01G05 ƒ C‚, where ©‚4‚1G5 D ƒ¡E0S4‚3G5=¡‚
denotes the expected Fisher information for the true likelihood
and

C‚ D E0681ƒ � 04Y 1Z59eC‚4Y 1Z571 (12)

with

eC‚4Y 1 Z5 D cov0

À
S‚0

4Y —X1 Z51
¡ logq

� 0
‚0

4X1 Z5

¡‚

­­­­Y 1 Z

Á
0

Note that ë‚4‚01G ü
01 � 05 may not be symmetric due to the

presence of the covariance term.
When selection probabilities are estimated from the data, we

assume that they are estimated using a parametric regression
model. Let ¡ denote the set of 4y1 z5 such that � 4y1 z5 > 0.
Given 4y1 z5 2 ¡, suppose that we have a regression model
E4R—y1 z5 D � 4y1 z3 �5, which we abbreviate as � 4�5. The
maximum likelihood estimator, O�, satis� es the score equationsPN

iD1 S� 4Ri—Yi1Zi5 D 0, where

S�4R—Y 1Z5 D
¡� 4�5

¡�

I¡4Y 1Z5

� 4�581ƒ � 4�59
8R ƒ � 4�591 (13)

and the corresponding information matrix is

©�4�5 D E0

µÀ
¡� 4�5

¡�

Á2 I¡4Y 1 Z5

� 4�581ƒ � 4�59

¶
0 (14)

Let O� D � 4 O�5. When Y and Z are discrete and the model
is saturated, O� equals the observed sampling fractions. If we
de� ne ë�4‚1G ü 1 �5 D ¡ë 8‚3G ü 1 � 4�59=¡� and �0 the true
value of �, then it can be shown that

ë� ² ë�4‚01G ü
01 �05 D ƒE0681ƒ � 04Y 1Z59eC�4Y 1Z571

(15)

where

eC�4Y 1 Z5 D cov0

À
S‚0

4Y —X1 Z51
¡ logq

� 4�05

‚0
4X1 Z5

¡�

­­­­Y 1Z

Á
0

Proposition 1. Under regularity conditions A0–A5 listed
in the Appendix, the following results hold:

a. The estimating equations SPS8‚3GN 1 O� 9 D 0 have a
unique, consistent sequence of solutions, 8 O‚PS

N 9N ¶1.
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b.

p
N 4 O‚PS

N ƒ ‚05 D ƒë ƒ1
‚

1
p

N

NX

iD1

ê4Ri1 Yi1 Xi1 Zi5 C op4151

where

ê4R1 Y 1X1Z5 D a04R1 Y 1X1Z5 C a14R1 X1Z5C a24R1 Y 1Z51

with

a04R1 Y 1 X1 Z5 D RS‚0
4Y —X1 Z5 C 41 ƒ R5S‚01G0

4Y —Z51

a14R1 X1 Z5 D RE0

µ
1ƒ � 04Y 1Z5

q
� 0
‚0

4X1Z5
D4Y 1X1 Z5—X1Z

¶
1

(16)

and

a24R1 Y 1Z5 D ƒë� © ƒ1
� S�0

4R—Y 1 Z51 ©� D ©�4�050

c. If var0ê < ˆ, then
p

N 4 O‚PS
N ƒ ‚05 ! N 401ì5 in distri-

bution, where

ì D 4©‚ C C‚5ƒ14©‚ C è54© T
‚ C CT

‚ 5ƒ1

and

è D var08a14R1 X1Z59 C C‚ C CT
‚ ƒ ë� © ƒ1

� ë T
� 0

Here a04R1 Y 1X1Z5 is the likelihood score for a single
observation for � xed G D G0, a14R1 X1 Z5 adjusts for estima-
tion of G ü and is nonzero only for units with complete data
(R D 1), and a24R1 Y 1 Z5 adjusts for estimation of � . Because
it contributes the last term in the expression for è, which is
a nonnegative de� nite matrix, estimation of � improves ef� -
ciency even when � D � 0 is known. An outline of the proof of
the proposition is given in the Appendix under the assumption
that Z, Y , and X are discrete. A more complete argument that
relaxes these conditions has been given in Chatterjee’s (1999)
dissertation.

A “plug-in” approach can be used to estimate ì. First, è
can be consistently estimated by

bè D cvar8 Oa14R1 X1 Z59 C bC‚ C bCT
‚ ƒ bë�

b© ƒ1
�

bë T
� 1

where cvar denotes the empirical variance. The estimate
Oa14R1 X1 Z5 is obtained by plugging in estimates for
the true parameter values and estimating S‚0 1G0

4y—z5 D
E08S‚0

4y—X1 z5—y1 z9 by taking the expectation of S O‚4y—X1 z5

with respect to the conditional density

dbP4X—y1 z5 D
h O�

O‚
4y1X1 z5dGN 4X—z5

R
h O�

O‚ 4y1x1 z5dGN 4x—z5
0

Similarly, bC‚, b©� , and bë� are obtained from (12), (14), and
(15), by plugging in the estimates for the true parameter values
in the corresponding formulas, estimating the covariance term
in these expressions with respect to the conditional distribution
bP4X—y1 z5, and estimating the expectations with respect to the

distribution of 4Y 1Z5 by the corresponding empirical versions.
Further, b©‚ can be estimated as

b©‚ D
1
N

X

i2V

I O‚4Yi—Xi1Zi5 C
1
N

X

j2SV

bE8I O‚4Yj —X1Zj5—Yj 1Zj591

where I‚4Y —X1 Z5 D ƒ¡S‚4Y —X1Z5=¡‚ and bE denotes the
expectation with respect to the conditional distribution
bP4X—Y 1 Z5.

3. SIMULATION STUDIES

3.1 Finite-Sample Performance

The � nite-sample performance of the proposed estimator of
‚ was investigated by simulation. Two models for f‚4Y —X1Z5,
logistic and linear, were considered. For the logistic model,
the 0–1 outcome variable Y was generated from logit P4Y D
1—X1 Z5 D ‚0 C ‚1X with logit p D log8p=41 ƒ p59. Here X
is standard normal and Z is a surrogate for X such that Z D
I 4X C… > 05 with … ¹ N401 15 independent of X and Y . For the
linear model, the continuous outcome Y was generated from
Y D ‚0 C ‚1X C ‡, with ‡ standard normal. X and its surro-
gate Z were generated as for the logistic model. Let eY D Y for
the logistic model case and eY D I 4Y > 15 for the linear model
case. Several designs for validation sampling were consid-
ered by varying the selection probabilities, � D 8� 4Y 1Z59 D
8� 4eY 1 Z59 D 8� 401051 � 401151� 411 051� 411159. These vari-
ations include (a) simple random sampling with � 4eY 1Z5 con-
stant, (b) strati� ed sampling with � 4eY 1 Z5 > 0 for each 4eY 1Z5,
and (c) restricted sampling with � 411Z5 D 0 but � 401Z5 > 0.
To implement the PS method, we used the observed sampling
fractions as estimates of the selection probabilities. For all
sampling designs, the total sample size was N D 300. Results
based on 500 replications for various values of ‚ and � are
displayed in Table 1. Overall, the simulation means of O‚ were
close to their true values, means of estimated variances were
close to the respective empirical variances, and the observed
coverage probabilities for 95% con� dence intervals based on
the estimates and the estimated standard errors were close
to the nominal value of .95. As would be expected for ap

n-consistent estimator, the biases of the PS estimates were
always of smaller order than the respective standard errors.

3.2 Ef’ ciency Comparisons

Breslow and Holubkov (1997), Scott and Wild (1997), and
Lawless et al. (1999) studied the semiparametric maximum
likelihood estimator (SPMLE) in situations where the phase-
one data, including both covariates and outcomes, are discrete
and there is a positive probability of sampling from each stra-
tum. Breslow, McNeney, and Wellner (2003) showed that the
SPMLE is asymptotically ef� cient and equivalent to the esti-
mate that solves the ef� cient score equations (Robins et al.
1995). Lawless et al. (1999) conducted a series of simula-
tion experiments in this setting of discrete phase-one data to
compare the performance of various pseudolikelihood meth-
ods relative to the SPMLE. We used their simulation setups
to compare the ef� ciency of the proposed PS method with
the SPMLE and other pseudolikelihood methods for both the
“surrogate covariate” and “expensive covariate” problems. For
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Table 1. Finite-Sample Properties of O‚

bias� 102 var � 102 cvar� 102 95% CP bias� 102 var � 102 cvar� 102 95% CP

� O‚0
O‚1

O‚0
O‚1

O‚0
O‚1

O‚0
O‚1

O‚0
O‚1

O‚0
O‚1

O‚0
O‚1

O‚0
O‚1

Logistic model: logit P D ‚0 C ‚1X

‚0 D ƒ1, ‚1 D 0 ‚0 D ƒ1, ‚1 D 007

(.2,.2,.2,.2) ƒ0982 1001 2010 5006 1087 4047 93% 95% ƒ3065 6028 3019 8027 3018 7067 95% 94%
(.2,.4,.2,.4) ƒ0862 0745 2005 3087 1081 3063 93% 95% ƒ3025 4093 3002 6023 2082 5048 95% 95%
(.2,.2,.7,.7) ƒ0117 0010 2003 3059 1076 3002 93% 94% ƒ1037 2089 2042 5014 2017 4042 94% 94%
(.1,.3,.5,.7) ƒ0226 ƒ0187 2002 3057 1077 3019 93% 94% ƒ1048 3025 2064 5019 2029 4035 94% 93%
(.3,.8,0,0) ƒ2047 1003 2024 6002 2009 6009 94% 96% ƒ6076 5019 8032 1101 1100 1109 95% 94%
(.1,.5,1,1) ƒ0077 ƒ0367 2002 2071 1074 2058 93% 95% ƒ1006 1075 2033 3034 2004 3003 94% 95%

Linear model: Y D ‚0 C‚1X C‡, ‡ ¹ N(011)

‚0 D 0, ‚1 D 005 ‚0 D 0, ‚1 D 1

(.2,.2,.2,.2) 0514 ƒ0191 0577 0821 0552 0805 95% 94% 0305 0327 1007 1012 1005 1002 94% 93%
(.2,.4,.2,.4) 0428 ƒ0017 0480 0662 0483 0664 96% 96% 0237 0408 0807 0823 0796 0775 95% 95%
(.2,.2,.7,.7) 0491 ƒ0203 0486 0639 0475 0658 96% 95% ƒ0228 0018 0740 0778 0754 0757 95% 95%
(.1,.3,.5,.7) 0022 0273 0524 0729 0525 0706 95% 94% ƒ1007 1005 0977 1011 1002 1006 95% 93%
(.3,.8,0,0) 0593 ƒ0221 0409 0605 0439 0590 96% 95% 1098 1054 0663 0833 0668 0665 94% 93%
(.1,.5,1,1) 0175 0286 0468 0536 0457 0542 94% 95% ƒ0685 0951 0812 0928 0807 0846 94% 94%

NOTE: Total sample size N D 300, X ¹ N(011), and Z D I(X C … > 0) with … ¹ N(011). � D { � (eY1Z)} D { � (010)1� (011)1� (110)1 � (111)} , where eY D Y for the logistic model case and
eY D I(Y > 1) for the linear model case. Here cvar refers to the simulation mean of the estimated variance of O‚, and CP is the coverage probability, all based on 500 replications.

the surrogate covariate problem (Table 2), we � rst generated
a covariate X ¹ N 40115 and an outcome Y from the logis-
tic regression model logit P4Y D 1—X5 D � C ‚X. For each
value of ‚, we chose � such that the marginal probability of
observing Y D 1 was .05. We then generated W ¹ N 401 15
such that cor4X1 W 5 D 09 and obtained Z, a surrogate for X,
by collapsing W into six levels, with the levels de� ned by the
corresponding hexiles. The phase-two sample was selected in
two ways: all cases (Y D 1) and 5% of the controls (Y D 0),
or 20% of the cases and 1% of the controls. The total sample
sizes (n) for these two cases were n D 91000 and n D 451000,
so that in both situations the size of the phase-two sample
was approximately 900, with balanced numbers of cases and
controls.

The same setup was used for the expensive covariate prob-
lem, except that cor4X1 W 5 D 03 and Z, obtained by discretiz-
ing W into six levels, was itself considered a covariate of
interest. The corresponding logistic regression model was logit
P4Y D 1—X1 Z5 D � C ‚X CƒZ, with ƒ � xed at .5. We imple-
mented the PS method with both known (PSI) and estimated

Table 2. Ef’ ciencies of O� and O‚ Relative to Maximum Likelihood for
the Six-Level Fine Surrogate in Logistic Regression

n D 9,000 n D 45,000
� (1, z) D 1.0, � (0, z) D .05 � (1, z) D .2, � (0, z) D .01

‚ ELI ELII PSI PSII ELI ELII PSI PSII

O� 0 100 100 100 100 100 100 100 100
05 99 99 100 100 96 96 100 100

100 94 93 100 100 87 86 100 100
105 83 82 99 99 70 71 95 99

O‚ 0 92 92 100 100 99 99 100 100
05 80 80 99 100 78 78 100 100

100 69 68 98 99 55 54 96 96
105 67 67 94 98 48 50 85 95

(PSII) selection probabilities. Lawless et al. (1999) had found
an “estimated pseudolikelihood” approach, equivalent to esti-
mating the scores (6) using the weighted empirical covariate
distribution (11), to be the “most promising” of the pseudo-
likelihood methods. We also implemented this method with
both known (ELI) and estimated (ELII) selection probabilities.

Several conclusions can be drawn from the results given in
Tables 2 and 3. First, for both models and for all parame-
ters, the PS methods, particularly PSII, had remarkably high
ef� ciency and often achieved the same ef� ciency as the
SPMLE. Second, in all cases the PS method outperformed
the estimated pseudolikelihood method, particularly when the
regression effect was strong. Third, the ef� ciency of the PS
method slowly declined as the regression effect increased and
the sampling fraction decreased. Finally, the use of estimated

Table 3. Ef’ ciencies of O� , O‚, and Oƒ Relative to ML for the Expensive
Covariate Data Problem in Logistic Regression

n D 91000 n D 451000
� (11z) D 100, � (01z) D 005 � (11z) D 02, � (01z) D 001

‚ ELI ELII PSI PSII ELI ELII PSI PSII

O� 0 100 100 100 100 105 105 105 105
05 97 96 100 100 87 87 103 103

100 87 87 99 100 77 78 95 99
105 79 80 93 99 72 72 93 98

Oƒ 0 98 97 100 100 102 102 107 107
05 95 95 100 100 82 82 99 101

100 84 84 99 100 62 63 91 99
105 77 77 94 98 54 55 85 99

O‚ 0 92 91 101 100 100 100 109 108
05 85 84 98 100 86 85 100 102

100 81 81 93 100 77 77 82 94
105 75 76 80 99 70 71 66 89
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Table 4. Ef’ ciencies of O�, O‚, and O‘ Relative to PSI for the Surrogate
Covariate Problem in the Linear Regression Model

‚ WL ELI SPMLE (reduced data)

O� 000 2 100 º 29
005 5 57 º 63
100 20 72 º 167

O‚ 000 3 98 º 33
005 10 59 º 83
100 38 73 º 211

O‘ 000 4 100 º 80
005 5 93 º 83
100 13 85 º 163

selection probabilities (observed sampling fractions) improved
the ef� ciency of the PS method.

In a second experiment, we simulated data from the contin-
uous outcome setup described by Lawless et al. (1999). We
generated X from a N 401 15 distribution and Y from the linear
regression model Y D � C‚X C…, … ¹ N 401‘ 25. We generated
Z following the same setup of Table 2. To select the phase-
two sample, we de� ned three strata—Y < C1, C1 µ Y < C2

and Y ¶ C2—so that P4Y < C15 D P4Y > C25 D 005; 25%
of the units in the tail strata and only 1.4% in the middle
stratum were selected. To implement the SPMLE, Lawless
et al. (1999) de� ned six strata, splitting each of the three
strata used to select the sample, and assumed that only stra-
tum information on the outcome was available at phase one.
We implemented ELI and PSI for this problem. Because both
methods easily handle continuous outcome data, however, we
used the exact outcome information at both phases. We also
implemented a weighted likelihood (WL) approach, perform-
ing a weighted regression analysis on the units selected at
phase two and using the inverses of the known selection prob-
abilities as weights. Because Lawless et al. (1999) reported
the ef� ciency of this complete-case method relative to their
SPMLE on the reduced data, estimation of the ef� ciency of
WL relative to PSI enabled us to approximate the ef� ciency
of their SPMLE relative to PSI.

The results are reported in Table 4. PSI estimated nonnull
regression effects more ef� ciently than did ELI. The relative
ef� ciency of the SPMLE for the reduced data, computed as the
ratio of the relative ef� ciency of WL to PSI and that of WL
to SPMLE as reported by Lawless et al. (1999), was severely
low for both the intercept and the slope parameter when there
was no association between Y and X . This suggests that dis-
cretizing the outcome information for the sake of implement-
ing SPMLE may result in substantial loss of power when the
true regression relationship is weak or moderate. However, for
‚ D 1, which represents a very strong regression relationship
between Y and X , the SPMLE was substantially more ef� cient
than the PS estimator, even though it used only the reduced
data.

3.3 Robustness and Model Checking

In this section we study robustness of the PS estimator when
the underlying regression model is misspeci� ed. The issue of
robustness becomes particularly important for case-only and
control-only and other restricted designs because they offer
only limited scope for checking model assumptions.

The simplest method for analyzing data from two-phase
strati� ed designs is the standard survey approach based on
WL. Although this method is inef� cient when the assumed
model is correct, sometimes seriously so (Table 4), its appeal
has been a type of robustness. Even if the model f‚4y—x5
is incorrect, the WL estimator is consistent for a population
parameter of interest. Manski and Thompson (1989) showed
that for a binary regression model P4Y D 1—X D x5 D p‚4x5,
the WL estimate is consistent for the parameter value B
that minimizes the expectation of the loss function ƒ log81 ƒ
—Y ƒ p4X5—9 within the class of all predictors of the form
p4x5 D p‚4x5. Scott and Wild (1986) suggested that the robust-
ness of other estimators could be assessed by examining their
bias as estimators of B under misspeci� cation.

Following Scott and Wild (1986), we generated binary out-
come data using the logistic regression model logit P4Y D
1—X D x5 D ‚0 C ‚1x C „x2 but assumed the working model
logit P4Y D 1—X D x5 D ‚0 C‚1x for analysis. Data on X were
generated from the standard normal distribution. We consid-
ered two types of surrogates Z for the data available at phase
one: a two-level crude surrogate generated using the model
described in Section 3.1 and a six-level � ne surrogate gener-
ated using the model described in Section 3.2. We considered
three alternative phase-two designs: case-only, control-only,
and case-control as described in Table 5. For two different
underlying true models, Table 5 shows the bias, mean squared
error (MSE), and the 95% con� dence interval (CI) coverage
probability of O‚1 as an estimate of B1, the almost sure limit
of the maximum likelihood estimates for ‚1 in the working
model based on the complete simulated data.

Several interesting observations can be made from Table 5.
First, the PS estimator overestimated B1 irrespective of the
design. Second, for each design, the bias of the PS estima-
tor was substantially lower when the phase-one data consisted
of the � ne surrogate. Third, the bias in estimation of B1 was
smallest for the control-only design and largest for the case-
only design. For the case-only design with a crude surrogate
at phase one, the bias in the PS estimator of ‚1 was as great as
60% of the magnitude of B1 (see model b). Thus we see that
under gross violation of the linearity assumptions, the bias in
the PS estimator with the case-only design can be unaccept-
ably high. Finally, for the case-control design, although the
WL method had minimal bias, it had large variability. As a
result, except for the situations where the PS estimator was
severely biased, the MSEs for the WL estimator were often
signi� cantly higher than those of the PS estimates.

When the case-control design is used at phase two, depar-
ture from linearity can be tested in the usual fashion by
including quadratic or other higher-order terms in the model
and assessing the signi� cance of the corresponding regres-
sion coef� cients. For restricted designs, however, there may
be only limited scope for such model checking. Consider, for
example, the case-only design. Clearly, the regression relation-
ship between Y and X is not identi� able from the phase-two
data alone. Thus the phase-one data are needed both to cor-
rect for sampling bias in selection of the phase-two sample
and to identify the regression relationship. Intuitively, for esti-
mating a quadratic trend, at least three distinct values of Z are
required. We tested this assertion using the simulation setup
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Table 5. Simulation Results Based On 500 Replications

Crude surrogate Fine surrogate

PS PS
WL WL

Case-only Control-only Case-control Case-control Case-only Control-only Case-control Case-control

Model a: logit P(Y D 1—x) D ƒ4 Cx ƒ 015x2 (B1 D 0783)

Bias 0269 0097 0133 0061 0114 0029 0071 0061
MSE 0270 0040 0052 0097 0038 0019 0023 0097
dStd

ü
0244 0173 0177 0263 0155 0136 0142 0263

95% CI coverage 0920 0934 0924 0952 0919 0949 0964 0952

Model b: logit P(Y D 1—x) D ƒ4C x ƒ 03x2 (B1 D 0636)

Bias 0405 0136 0197 0060 0169 0038 0101 0060
MSE 0261 0053 0077 0140 0055 0019 0029 0104
dStd 0287 0188 0188 0264 0173 0140 0150 0264
95% CI coverage 0818 0918 0870 0964 0892 0967 0938 0964

NOTE: The size of the phase-one sample was 5,000. In the case-only design, all of the cases, with expected numbers of 113 and 96 for models a and b, are selected at phase two. In
the control-only design, 113 controls and 96 controls are selected at phase two. In the case-control design, cases and controls are selected in 1:1 ratio, so that the expected total size of
the phase-two sample is 113 and 96 for models a and b.

ü dStd: mean of estimated standard errors.

described earlier. When we tried to � t the quadratic model
with the crude two-level surrogate, the lack of identi� ability
manifested itself by PS equations with multiple roots. Using
the EM-type algorithm described in Section 2.2, we obtained
different estimates depending on the starting values. When we
used a three-level surrogate instead, this multiplicity occurred
much less frequently and disappeared with increasing sam-
ple size. In general, we anticipate that the richness of the
model that can be � tted using a restricted design will depend
on the richness of the phase-one data and the extent of cor-
relation between phase-one and phase-two covariates. In any
given application, a possible way to check for identi� ability
problems would be to vary the starting values for the EM-
type algorithm over a wide range of the parameter space and
see whether the algorithm converges to different estimates for
different starting values. Even if the true model is identi� able
for a given study design, the statistical power to discriminate
it from submodels may be quite low.

These studies of robustness involved misspeci� cation of
the regression model. A separate robustness issue, especially
for continuous outcomes, occurs when the regression model
for the lower-order moments of scienti� c interest is correctly
speci� ed, but the density function f‚4Y —X1 Z5 is not. We
simulated this situation in the linear regression setting of
Table 4. The error … was generated from a t-distribution with 5
degrees of freedom but was assumed normal. Regardless of the
strength of the regression relationship, the PS method yielded
unbiased estimates for both the slope and intercept parameters
of the linear regression model (data not shown). Further explo-
ration of the robustness of the PS method is needed, however,
under more general misspeci� cation of the error distribution.

4. CASE-CONTROL STUDY OF LEPROSY

The leprosy data shown in Table 6 were taken from Scott
and Wild (1997, table 1). Clayton and Hills (1993, p. 156)
have provided a detailed description. In short, these data
resulted from case-control sampling of a population survey of
people under 35 in Northern Malawi. Cases were all new cases

of leprosy. Controls were random samples from those without
leprosy. The variable Age refers to the age-group midpoints,
and Scar represents the presence or absence of a BCG vac-
cination scar (1, present; 0, absent). The known population
totals in each category classi� ed by leprosy status Y and age
group Z constituted the phase-one data. Scar was observed
only in the validation (i.e., case-control) sample. As suggested
by Scott and Wild (1997), the linear logistic model

logitP D ‚0 C ‚1 T C ‚2Scar1

where T D 1004Age C 7055ƒ2, was chosen to � t the data.
Results for PSII and the SPMLE proposed by Scott and

Wild (1997) are given in Table 7. The PS method gave sim-
ilar point estimates and standard errors to those of SPMLE.
To illustrate the potential applicability of the PS method to
restricted designs, a “case-only” analysis was conducted by
dropping data on Scar for controls and pretending that the val-
idation sample contained only the cases. Similarly, a “control-
only” analysis was performed with data on Scar for cases
deleted. Compared with the previous results, these two analy-
ses yielded similar regression coef� cients but had substantial
loss of ef� ciency for estimation of the BCG (Scar) effect.

Table 6. The Leprosy Data

Case-control (validation) sample
Population

Scar D 0 Scar D 1 totals

Age Case Control Case Control Case Control

205 1 24 1 31 2 19,367
705 11 22 14 39 25 17,388

1205 28 23 22 27 50 13,222
1705 16 5 28 22 44 10,352
2205 20 9 19 12 39 8,047
2705 36 17 11 5 47 6,003
3205 47 21 6 3 53 6,503

Source: Table 1 of Scott and Wild (1997).
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Table 7. Results of Analyses of Table 6 Data: T D 100(Age + 7.5) - 2

Poststrati’ ed
analysis

Case-only Control-only
PS MLE analysis: PS analysis: PS

Coef’ cient Standard error Coef’ cient Standard error Coef’ cient Standard error Coef’ cient Standard error

Intercept ƒ40484 .113 ƒ40481 .114 ƒ40423 .171 ƒ40477 .128
T ƒ40092 .448 ƒ40091 .449 ƒ30976 .527 ƒ40040 .478
Scar ƒ0415 .169 ƒ0421 .178 ƒ0574 .368 ƒ0460 .311

5. DISCUSSION

Our proposed new method for analyzing two-phase data is
computationally simple and yet, at least in the examples that
we have considered, highly ef� cient. For typical two-phase
designs, where each subject has positive probability of being
selected at phase two, the PS estimator had remarkably high
ef� ciency compared to alternative pseudolikelihood estimators
of comparable computational complexity. Moreover, except
for extreme parameter values, it often achieved full or nearly
full ef� ciency, in comparison with the fully ef� cient SPMLE.
This is encouraging, because semiparametric ef� cient meth-
ods, particularly for continuous Y , can be complex and dif� -
cult to implement.

In some practical applications, it may be impossible or very
expensive to collect detailed covariate data for subjects with
certain values of Y . The assumption used by existing semi-
parametric methods—namely, that all subjects have positive
probability of selection into the validation sample—renders
them useless in such circumstances. The new methodology
proposed in this article provides a way of analyzing data from
such restricted designs. But restriction of the validation sample
to subjects with certain Y values implies heavy reliance on the
model assumptions, with limited opportunity for model check-
ing. Thus, even though the proposed method allows analyses
of data from restricted designs, we do not recommend their
use unless absolutely necessary for practical reasons. Never-
theless, if such a design is inevitable, the new method provides
at least a way of extracting some information from the data.
In particular, if the underlying model assumption is not too
unrealistic and if the phase-one covariate data contain substan-
tial information about the full covariate data of interest, then
the PS method could be a valuable tool for making regression
inference.

In this article, we assessed the robustness of the PS esti-
mator under model misspeci� cation. In doing so we followed
conventional wisdom, that the parameter estimate from WL is
useful for prediction even if the wrong model is � tted. Thus
we assessed the performance of the PS estimates relative to the
WL estimates. Although they supported this viewpoint earlier
(Scott and Wild 1986), Scott and Wild (2002) argued more
recently that this is not always justi� ed. They showed that if
a linear logistic regression model is � tted when the underly-
ing true model is quadratic, then the WL slope estimator is
consistent for the tangent to the underlying quadratic curve at
a point near the tail of the X distribution, where most of the

cases occur. By contrast, the SPMLE slope estimates the tan-
gent at a more moderate or central value of X. Thus the choice
between WL and SPML estimators depends on the covariate
values of greatest interest to the researcher. With this alterna-
tive view in mind, we also compared the bias of the PS esti-
mator relative to that of SPMLE. For the case-control design,
where all three were applicable, the PS estimates were much
closer to the SPMLEs than to the WL estimates.

The PS estimator is quite � exible and can handle data
from two-phase strati� ed designs and other missing-covariate
data problems for a large class of regression models. In his
dissertation, Chatterjee (1999) considered several extensions
of the basic approach outlined here. He showed that the
method easily accommodates designs that generate non-iid
data, for example, studies with case-control sampling at phase
one (Breslow and Holubkov 1997). It also accommodates the
more complex de� nition of strata considered by Lawless et al.
(1999) and certain types of censored-data regression prob-
lems arising in reliability studies (Hu and Lawless 1996). A
kernel-smoothing approach for estimating (9) in the presence
of continuous Z, in the spirit of Carroll and Wand (1991), was
found to perform well. These and other related results will
be presented in a later publication. Of course, such smooth-
ing techniques are limited by the “curse of dimensionality” to
problems involving a small number of continuous Z variables.
Further research is warranted on extensions of the method to
various other designs that reduce costs by limiting the eval-
uation of expensive covariates to selected subjects. General
multiphase designs, partial questionnaire designs (Wacholder,
Carroll, Pee, and Gail 1994), and the case-cohort and nested
case-control designs used in survival analysis are some exam-
ples of particular interest.

APPENDIX:

Regularity Conditions for Proposition 1:
Z and Y Are Discrete

Let z11 : : : 1 zK be the possible values of Z and let y11 : : : 1 yS be
the possible values of Y , and set ƒ D 4‚1�5. The following assump-
tions are suf� cient for the conclusion of Proposition 1 (consistency
and asymptotic normality of the PS estimator):

(A0) Conditions A and B in (3) hold.
(A1) ‚ ! logf‚4y—x1 z5 is thrice differentiable with respect to ‚,

and the third derivatives are bounded by M4y1x1 z5, an integrable
function of 4y1x1 z5, for all ‚’s in a neighborhood of ‚0 .

(A2) � ! r log� 4y1z3 �5 C 41 ƒ r5 log81 ƒ � 4y1 z3 �59 satis� es
the analogous classical smoothness assumptions (as stated in A1) for
� in a neighborhood of �0.
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(A3) ë‚ D ©‚ CC‚ is nonsingular.
(A4) For all 4s1k5,

0 <
Z

h
� 0
‚0

4ys —x1 zk5 dG ü
k04x5 < ˆ1

Z ­­S‚0
4ys —x1 zk5

­­

� h
� 0
‚0

4ys —x1 zk5dGü
k04x5 < ˆ0

(A5) For all (s1 k), the functions h�
‚ 4ys —x1 zk5 and h�

‚ 4ys —x,
zk5S‚4ys —x1 zk5 are twice differentiable with respect to ƒ, with the
second derivatives uniformly integrable with respect to Gü

04x5 for all
ƒ in a neighborhood of ƒ0 .

Outline of Proof of Proposition 1: Z , Y, and X all Discrete

a. Consistency of O‚PS
N can be proved using arguments given by

Foutz (1977). The key condition, the unbiasednessof the PS functions
SPS4‚3G ü

01� 05, was shown in Section 2.1.
b. Let G ü

k04x5 D P4X µ x—Z D zk , R D 15, for k D 11 : : : 1K and
set Gü

0 D 4G ü
11 : : : 1G ü

K 5. De� ne GNk to be the empirical distribution
function of 6X—Z D zk7 from the validation sample. Under appropri-
ate stochastic equicontinuity conditions and smoothness assumptions
(see, e.g., van der Vaart and Wellner 1996, p. 310), the following
expansion can be shown to be valid:

p
N4 O‚PS

N ƒ‚05 D ƒë‚4‚01G ü
01� 05

�
p

N

8
><

>:

ëN 4‚03G ü
01� 05

C
KX

kD1

ëGü
k
6GNk ƒ Gü

k07 Cë� 6 O� ƒ�07

9
>=

>;

C op4150 (A.1)

In (A.1), if X is discrete with possible values in 8x11 : : : 1 xL9

and G ü
k is de� ned by p ü

k D 4p ü
1k1 : : : 1 p ü

Lk5
T , where p ü

lk D pr4X D
xl—Z D zk1R D 15, then ëG ü

k
is the dim4‚5 � L derivative matrix

¡ë4‚03G ü 1� 05=¡p ü T
k and 6GNk ƒ Gü

k07 is the L � 1 vector of 6 Op ü
k ƒ

p ü
k07. When X is continuous, ëG ü

k
is an operator representing the

Fréchet derivative of ë4‚03 Gü 1 � 05 with respect to the in� nite-
dimensional parameter G ü

k , and 6GNk ƒG ü
k07 is an empirical process.

For simplicity, we continue the proof assuming that X is discrete.
The steps for the continuous case are similar, although the details
involve the more sophisticated arguments developed in Chatterjee’s
dissertation.

From (A.1), the proof of part b follows from standard linearization
argument that shows

p
N

KX

kD1

ëG ü
k
6GNk ƒG ü

k07 D N ƒ1=2
NX

iD1

a14Ri1Xi1 Zi5 Cop415 (A.2)

and
p

N ë� 6 O� ƒ�07 D
1

p
N

NX

iD1

a24Ri1 Yi1 Zi5 Cop4151 (A.3)

where the functions a14r1 x1 z5 and a24r1 y1 z5 are de� ned in Propo-
sition 1.

c. Asymptotic normality follows from standard application of the
central limit theorem. To derive the given form of the asymptotic
variance, it is enough to prove the following:

(C1) E08a04R1 Y 1X1 Z5a24R1 Y 1 Z59 D 0.
(C2) E08a04R1 Y 1X1 Z5a14R1X1Z59 D C‚ .
(C3) E08a14R1 X1Z5a24R1Y 1Z59 D ë�© ƒ1

� ë T
� .

The proof of C1 follows easily from the fact that E6a04R1Y ,
X1Z58R ƒ � 4Y 1 Z3 �59—Y 1Z7 D 0. Let Ez

0 denote the expectation
operator given Z D z. To prove C2, note that

Ez
08a04R1Y 1 X1 z5a14R1Y 1 z59

D Ez
0

À
RS‚0

4Y —X1 z5
Z 1 ƒ� 04y1z5

q
� 0
‚0

4X1 z5
D4y1X1 z5f‚0

4y—X1z5dy

Á

D
Z 61 ƒ� 04y1 z57

� Ez
0

(
� 04Y 1 z5

q
� 0
‚0

4X1z5
S‚0

4Y —X1 z5D4y1 X1 z5f‚0
4y—X1z5

)
dy0

The proof now follows from the fact that

1

q
� 0
‚0

4X1 Z5
E08S‚0

4Y —X1 Z5�04Y 1Z5—X1Z9 D
¡

¡‚
logq

� 0
‚0

4X1Z50

To prove C3, it is enough to show that E08a14R1 X1Z5

S�0
4R—Y 1 Z59 D ë� . If we write a14R1 X1Z5 as Rm4X1Z5, then it

easily follows that

E08a14R1 X1Z5S�0
4R—Y 1Z59 D E0

µ
¡� 4Y 1Z3�05

¡�
E8m4X1Z5—Y 1Z9

¶
0

Next, rewrite the formula for ë� given in (15) as

ƒE0EZ
0 EY 1 Z

0

2

664

81ƒ � 04Y 1Z59
D4Y 1X1 Z5

q
� 0
‚0

4X1Z5

�
Z ¡� 4y1Z3�05

¡�
f‚0

4y—X1Z5dy

3

775 0

Then, by changing the order of the expectations and the integra-
tion, the foregoing expression can be written as E068¡� 4Y 1Z3�05=
¡�9h4Y 1Z57, where

h4y1Z5

D 1

dP4y—Z5
EZ

0 EY 1 Z
0

µ
81ƒ� 04Y 1Z59

D4Y 1X1 Z5

q
�0
‚0

4X1 Z5
f‚4y—X1Z5

¶

D
1

dP4y—Z5

Z
2

64

81ƒ � 04Y 1 Z59

�
Z D4Y 1 x1Z5f‚0

4Y —x1Z5f‚0
4y—x1Z5

6q
�0
‚0

4x1 Z572
dGü 4x—Z5

3

75 dY

D
1

dP4y—Z5

Z
"

f‚0
4y—x1 Z5

6q
�0
‚0

4x1 Z572

Z
81 ƒ� 04Y 1Z59D4Y 1x1Z5f‚0

4Y —x1 Z5dY

#

dG ü 4x—Z5

D E8m4X1 Z5—Y D y1 Z90
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