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Abstract

Cutaneous malignant melanoma is one of the fastest increasing cancers
with an incidence that has more than doubled in the last 25 years. Sunlight
exposure is strongly implicated in the etiology of cutaneous malignant
melanoma and the UV portion of the sunlight spectrum is considered
responsible. Data are, however, conflicting on the roles of ultraviolet B
[UVB; 280–320 nanometers (nm)] and ultraviolet A (UVA; 320–400 nm),
which differ in their ability to initiate DNA damage, cell signaling path-
ways and immune alterations. To address this issue, we have used spe-
cialized optical sources, emitting isolated or combined UVB or UVA
wavebands or solar simulating radiation, together with our hepatocyte
growth factor/scatter factor-transgenic mouse model of UV-induced mel-
anoma that uniquely recapitulates human disease. Only UVB-containing
sources initiated melanoma. These were the isolated UVB waveband
(>96% 280–320 nm), the unfiltered F40 sunlamp (250–800 nm) and the
solar simulator (290–800 nm). Kaplan-Meier survival analysis indicated
that the isolated UVB waveband was more effective in initiating mela-
noma than either the F40 sunlamp or the solar simulator (modified log
rank P < 0.02). The latter two sources showed similar melanoma effec-
tiveness (P � 0.38). In contrast, transgenic mice irradiated with either the
isolated UVA waveband (>99.9% 320–400 nm, 150 kJ/m2), or an F40
sunlamp filtered to remove > 96% of the UVB, responded like unirradi-
ated control animals. We conclude that, within the constraints of this
animal model, UVB is responsible for the induction of mammalian cuta-
neous malignant melanoma whereas UVA is ineffective even at doses
considered physiologically relevant. This finding may have major impli-
cations with respect both to risk assessment from exposure to solar and
artificial UVB, and to development of effective protection strategies
against melanoma induction by UVB. Moreover, these differences in
wavelength effectiveness can now be exploited to identify UV pathways
relevant to melanomagenesis.

Introduction

Solar radiation reaching the Earth’s surface is a continuum of
electromagnetic radiation composed, in part, of two ranges of UV
wavebands, ultraviolet B (UVB) and ultraviolet A (UVA), and visible
light [400–780 nanometers (nm)]. Photobiological processes are
wavelength dependent, and these wavebands of radiation have signif-
icantly different biological effects (1). The specific waveband(s) re-
sponsible for inducing human melanoma are unknown, but the nature
of the initiating wavelengths is central to understanding mechanisms
of melanomagenesis. Successful prevention strategies for minimizing

exposure to harmful UV radiation from sunlight and artificial sources
and accurate risk assessment also require knowledge of the melano-
ma-effective wavelengths. Because observational epidemiologic stud-
ies cannot derive wavelength-dependent information, direct experi-
mentation in a relevant animal model is necessary. The lack, however,
of an appropriate animal model for UV-induced melanoma, until now,
has prevented the experimental identification of the active melanoma
wavebands (2, 3). The emergence of the hepatocyte growth factor/
scatter factor (HGF/SF) mouse that uniquely develops, in response to
neonatal UV exposure, melanocytic neoplasms in stages that are
highly reminiscent of human cutaneous malignant melanoma with
respect to biological, genetic, and etiologic criteria, has allowed for
the first time an assessment of the individual roles of UVA and UVB
in mammalian melanomagenesis (4). The requirement for neonatal
UV irradiation in this mouse model parallels the critical role for
childhood sunlight exposure revealed by epidemiologic studies of
human melanoma (5).

Materials and Methods

Neonatal HGF/SF-transgenic mice were irradiated with a specialized optical
source which coupled UV interference or cutoff filters to a 2.5 kW xenon lamp
(6, 7), to produce either isolated UVB or UVA wavebands or solar simulating
radiation containing UVB, UVA, and visible radiation in proportions approx-
imating sunlight. Neonatal transgenic animals were also irradiated with F40
sunlamps, which produce UVB and UVA radiation and visible light.

The spectral outputs of the sources used are given in Fig. 1 and the doses
delivered are listed in Table 1. Following treatment, animals were monitored
weekly over 14 months for lesion and tumor development and melanomas
were histologically verified as described previously (2, 4). Time to develop-
ment of the first lesion that subsequently became a melanoma was determined
for each animal and used in survival analysis (see Results). In agreement with
previous studies (2, 4), by far the majority of melanomas produced by irradi-
ation with any of the effective sources had a junctional component with a
variety of pathologies that closely resembled the histopathology of human
melanoma. No melanomas were observed in wild-type animals either unirra-
diated or irradiated with any UV source.

Results and Discussion

To deliver comparable doses from the spectrally different sources,
it was necessary to take into consideration differences in wavelength
effectiveness at initiating melanoma and to calculate, and then deliver,
equivalent biologically effective melanomagenic doses. An appropri-
ate experimentally derived wavelength dependence or action spectrum
can be used to account for differences in wavelength efficiency. An
action spectrum describes the relative efficiencies of radiation of
different wavelengths at production of a particular biological effect (6,
8, 9).

Briefly, to calculate biologically effective doses, the spectral output
of a given source is multiplied by the relevant action spectrum. The
integral of this product is the biologically effective or “weighted”
irradiance for that source (Eeff) according to the equation
Eeff � �A(�)E(�)d� where A(�) is the action spectrum in relative
units, E(�) is spectral irradiance emitted from a given source, and � is
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wavelength. From the biologically effective irradiance, the biologi-
cally effective dose (Deff) is calculated as Deff � Eeff � exposure
time (10).

No mammalian melanoma action spectrum exists to estimate mel-

anoma-effective doses. Based on the reported relationship between
sunburn and melanoma (11), we chose the Commission Internationale
de l’Eclairage (CIE) erythema (sunburn) action spectrum (8) as a
surrogate. This action spectrum is widely used as a standard, e.g., in
calculations of the UV index (12), a globally accepted index that is a
measure of biologically effective sunburning doses from sunlight for
human skin.

For each source used in these experiments, the erythemally effec-
tive irradiance was calculated by measuring the spectral output (Fig.
1) and multiplying it by the CIE action spectrum for erythema as
described above. The erythemally effective irradiance was used to
calculate the erythemally effective or standard erythemal dose (SED).
By convention, one SED is equivalent to 100 J/m2 of erythemally
weighted UV. For these studies, we chose a dose of 23 SED, deter-
mined previously to be melanomagenic in this mouse model (4). To
illustrate the biological relevance of this dose, we made use of
ground-based spectroradiometric measurements of sunlight from the
United States National Science Foundation’s UV monitoring network
(13). At San Diego (32.7°N, 117.2°W), 23 SED were received in
approximately 2 hours 40 minutes during noon-time on July 4, 2000.

The erythemally effective dose delivered to neonatal HGF/SF-
transgenic mice from each of three UVB-containing sources was
calculated to be 23 SED. These sources were the F40 sunlamp
(250–800 nm), the solar simulator (290–800 nm), and the isolated
UVB waveband (�96% 280–320 nm). For UVA exposure, it was
necessary to use an absolute rather than a biologically effective dose
because, as illustrated by the CIE action spectrum, UVA is much less
effective than UVB in producing erythema.4 Under the environmental
conditions described, �92% of the erythemally effective irradiance is
delivered by UVB whereas �8% is accounted for by UVA. Exposure
from the isolated UVA waveband (�99.9% 320–400 nm) was 150
kJ/m2. This dose of UVA would have been received in approximately
50 minutes of sunlight exposure. In that time, an erythemal dose of
about 7 SED would have been delivered, a dose determined to be
melanomagenic (see below).

To establish if exposure pattern affected melanoma development, we
first delivered the same absolute radiation dose from F40 sunlamps as a
single treatment (14.7 kJ/m2; 23 SED) at 3 days of age as described
previously (4). In a separate experiment, 14.7 kJ/m2 was delivered as
three equally fractionated treatments on days 3, 4, and 5 of age (Table 1).
The same proportion of animals developed melanoma with similar me-
dian times of tumor appearance (Table 2). Kaplan-Meier survival analysis
indicated no significant difference between the two groups (P � 0.85;
data not shown), and data from these two groups were pooled for
subsequent analysis. The number of treatments used for animals treated
with each source is indicated in Table 1.

We next tested an earlier observation, derived using a melanoma
model in the Xiphophorus fish, that UVA radiation can initiate mel-
anoma (14), using two strategies. First, we determined the conse-
quences of removing UVB from F40 sunlamps as follows: we com-
pared the effects of neonatal exposure to equivalent absolute doses of
radiation delivered from unfiltered F40 sunlamps, which emit UVB,
UVA, and visible radiation, to the effects of the same lamps filtered
with Mylar that removed 96.8% of the UVB (14.7 to 14.1 kJ/m2,
respectively; Fig. 1A; Table 1). Removal of UVB resulted in no
junctional melanoma formation. One deep dermal melanoma similar
to the unirradiated control group was observed (Fig. 2A; Table 2).

To verify and extend these observations, a second strategy was
used. We undertook an evaluation of the effects of UV radiation in the
mouse melanoma model, using either isolated wavebands of UVB or

4 Figs. 2 and 3 in http://www.cpc.ncep.noaa.gov/products/stratosphere/uv_index/
uv_nature.html.

Fig. 1. Spectral output of sources used to irradiate HGF/SF mice. A, a bank of 6 F40
sunlamps either unfiltered (F) or filtered with Mylar (�) to remove UVB radiation. B,
isolated UVB (�) or UVA (F) wavebands produced using a specialized source that
coupled UV interference filters to a 2.5 kW xenon lamp (6). An exposure field (�50 cm2)
sufficient for simultaneous irradiation of up to 12 neonatal mice by the selected wave-
band(s) was produced. C, solar-simulating radiation produced using the 2.5 kW xenon arc
source coupled with a 290 nm cutoff filter to deliver solar simulating radiation containing
UVB, UVA, and visible radiation approximating sunlight. All radiation measurements
were performed using a spectroradiometer (Model 742, Optronic Laboratories, Inc.,
Orlando, FL).
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UVA or solar simulating radiation (Fig. 1B and C). A comparison of
melanoma formation for these experimental groups indicated that only
UVB-containing sources initiated melanoma. These were the unfil-
tered F40 sunlamp (250–800 nm), the isolated UVB waveband
(�96% 280–320 nm), and the solar simulator (290–800 nm; Fig. 2A;
Table 2). In contrast, animals irradiated with the isolated UVA wave-
band (�99.9% 320–400 nm) did not produce any melanomas. Com-
parison of the data for all three melanoma-effective sources indicated
a significant positive trend for exposure to UVB (P � 0.01), a
negative but not significant trend for exposure to UVA (P � 0.07) and
no significant trend (P � 0.10) for total radiation (Tables 1 and 2; Fig.
2A and B). Underscoring this observation is data from a pilot study
(data not shown) in which HGF/SF-transgenic animals were irradiated
with a lower dose (4.5 kJ/m2 absolute dose; 7 SED) of the isolated
UVB waveband. This dose was very effective, producing a total of 10
melanomas in five animals from a cohort of 10 treated mice.

In contrast to the conclusions from the study of Xiphophorus fish as
a model system for melanoma, in which UVA was reported to have
melanoma-inducing properties (14), our data indicate that UVA (320–
400 nm; Fig. 2A; Table 2) was not melanomagenic. In our study, UVA
was ineffective as a melanomagenic agent even at a dose 33-fold
greater than the highly potent lower dose (7 SED) of isolated UVB
(150 kJ/m2 versus 4.5 kJ/m2). In comparison, UVA/UVB ratios cal-
culated with a radiation-transfer model to estimate sunlight exposure
for typical mid-latitude summer conditions (solar zenith angle � 30°,
total ozone column 250–450 Dobson units) under clear skies range
approximately between 16 and 24.5 Thus, within the constraints of
these comparisons and this model, there is a clear implication that in
natural sunlight, UVB and not UVA, is the carcinogen for melanoma.

This finding has major implications for mechanism because UVB
initiates DNA damage (15), signaling pathways (16, 17), and immune
alterations (6, 18, 19) differently from UVA.

Additional analyses of these data further revealed a significantly
greater efficiency in melanomagenesis for the isolated UVB wave-
band when compared to the F40 source or when compared to the solar
simulator (tumor-free survival: modified log-rank test, P � 0.02; Fig.
2A and B). Melanomas were also initiated by the isolated UVB

waveband with a significantly lower median time to tumor (P � 0.04,
Kruskal-Wallis; Table 2) than with the other two sources. The abso-
lute dose of UVB (Table 1) delivered from the isolated UVB wave-
band (13.5 kJ/m2) was substantially higher than from the F40 sunlamp
(6.2 kJ/m2) or from the solar simulator (5.9 kJ/m2), consistent with its
greater effectiveness and suggesting a dose-response for melanoma
formation. There was no significant difference between the F40 sun-
lamp and the solar simulator in median time to tumor (P � 0.16,
Mann-Whitney) or in tumor-free survival (modified log-rank test,
P � 0.38) consistent with the comparable absolute doses delivered.
Because both the F40 source and the solar simulator contain a sub-
stantial proportion of UVA and visible radiation not found in the
isolated UVB waveband (Table 1), it could be postulated that these
wavelengths inhibited melanoma formation. However, we do not
currently favor this interpretation because we found no significant
difference in tumor-free survival between animals treated with the
F40 sunlamp, which had a UVA/UVB ratio of 0.5:1, or with the solar
simulator, which had a UVA/UVB ratio of 6:1 and delivered an 11
times higher UVA dose (3.3 kJ/m2 versus 36.0 kJ/m2, respectively).

Despite the fact that the absolute doses of UVB were consistent
with the experimental observations, comparison of absolute doses of
UV from the three melanoma-effective optical sources is not a robust
evaluation of melanoma-inducing effectiveness. This is because the
differential in wavelength effectiveness for a given photobiological
effect is compounded by the differing wavelength outputs associated
with each optical source. To account for this in this study, given the
absence of a mammalian melanoma action spectrum, we used the
standardized CIE erythemal action spectrum as described above to
determine and then deliver identical erythemally effective doses (23
SED) from each of the three sources. Critically important was the
observation that the survival data for all three groups were not
superimposable as would be expected if the erythemally effective
dose were an accurate measure of melanoma induction (Fig. 2A and
B). In light of this observation, the CIE erythemal action spectrum,
although valuable in estimating effective human sunburning doses,
may not be an appropriate weighting function for evaluating melano-
ma-effective doses. These findings highlight a crucial need for exper-
imental derivation of a mammalian action spectrum specifically for
melanoma induction by UV. Other advantages of a melanoma action5 G. Bernhard, personal communication; http://www.libradtran.org/.

Table 2 Melanomagenesis in UV irradiated HGF/SF-transgenic mice

Source No. HGF/SF-transgenics No. with melanoma
Median time

to first melanoma (days)
Total no.

of melanomas
Mean no.

melanomas/tumor bearer
No. with

metastatic melanoma

UVB filter with xenon arc 18 10 127 17 1.7 2
Unfiltered F40 sunlamp

Single dose 23 6 169 6 1 1
Fractionated doses 19 5 174 5 1 1

Combined F40 sunlamp 42 11 174 11 1.0 2
Solar simulator 29 5 284 6 1.2 0
Mylar filtered F40 sunlamp 20 1 1 1 0
UVA filter with xenon arc 23 0 0 0 0
Nil 15 1 1 1 0

Table 1 UV sources and doses delivered to initiate melanoma in HGF/SF-transgenic mice

Source
Total radiation UV-vis
(250–800 nm) kJ/m2

Total UV A, B, & C
(250–400 nm) kJ/m2

Total UVA
(320–400 nm) kJ/m2

Total UVB
(280–320) nm kJ/m2

Peak UVB
Wavelength (nm) SED †

Number of treatments
to deliver total dose

UVB filter with xenon arc 14.0 14.0 0.5 13.5 306 23 3
Unfiltered F40 sunlamp

Single dose 14.7 9.5 3.3 6.2 313 23 1
Fractionated dose 14.7 9.5 3.3 6.2 313 23 3

Solar simulator: 322.1 41.9 36.0 5.9 320 23 1
Mylar filtered F40 sunlamp 14.1 4.0 3.8 0.2 0.1 1
UVA filter with xenon Arc 150.0 150.0 150.0 1.5e�5 1.1 3
Nil 0 0 0 0 0 0

NOTE. For spectral output of sources, see Figure 1. Neonatal HGF/SF-transgenic mice and an equivalent number of wild-type littermates were irradiated at 3 to 5 days of age.
† Standard erythemal doses calculated as described in the text.
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spectrum would be its use as a weighting function for accurate
estimation of melanoma-effective doses from different UV sources
such as sunlight or artificial sources (20), its use in providing valuable
information on the in vivo absorption spectrum of the principal target
molecule involved in the UV initiation of melanoma aiding in its
identification (1), and its use in suggesting molecular/genetic path-
ways for future study. These data would provide significant insight
into an overall evaluation of the role of UV in melanoma risk.

Decades-long increases in melanoma incidence continue (21). Sig-
nificant stratospheric ozone losses continue over polar regions as well
as over populated areas (22). Notwithstanding the success of the
Montreal Protocol in limiting global production and emission of
ozone-destroying gases, a specific time frame for recovery of the
stratospheric ozone layer, and mitigation of the associated increases in
UVB remain highly uncertain (23, 24). Thus, given the direct con-
nection between stratospheric ozone loss and increased UVB, an
uncertain period of sustained UVB increases with potential impact on
human health is anticipated.

Using the optical sources described, in conjunction with a unique
experimental mouse melanoma model that closely recapitulates hu-
man disease, we have shown that discrete waveband analyses are
possible for experimental melanoma induction. Significantly, we pro-
vide compelling evidence from the HGF/SF-transgenic mouse model
that UVB radiation, but not UVA, initiates mammalian melanoma,
suggesting that this disease belongs within the category of UVB
effects. The close similarity of the melanomas formed in these exper-
iments to human melanoma points to an important human relevance.
Additionally, we show that erythemally effective doses of UV from
artificial sources and, by extrapolation, from sunlight do not accu-
rately estimate melanoma risk. For a correct assessment of risk in-
volving UV radiation and melanoma, a melanoma action spectrum is
needed. In future studies, we anticipate that by establishing the mela-
nomagenic effectiveness of precisely defined narrower bands of radi-
ation (6) within the UVB region, identification of the UV pathways
relevant to melanoma will become possible. We conclude that our
data not only provide a focus for future basic research in mela-
nomagenesis, but also clearly indicate that for protection of melano-
ma-sensitive populations, minimizing exposure to UVB radiation is to
be strongly recommended.
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