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Some of Sam Greenhouse’s contributions
to statistical methods?

Mitchell H. Gail*™!

Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute,
6120 Executive Boulevard, Room EPS 8032, Bethesda, MD 20892-7244, U.S. A.

SUMMARY

I briefly survey some areas of Sam Greenhouse’s contributions to statistical methods before focusing
on three examples. These examples illustrate Sam’s ability to identify problems of practical importance
and to make valuable contributions to their solutions. Many of his papers continue to provide important
guidance and insight because he dealt with issues of enduring practical importance. Published in 2003
by John Wiley & Sons, Ltd.

1. INTRODUCTION

I had the good fortune to take Professor Samuel W. Greenhouse’s (Sam’s) course in multi-
variate analysis at George Washington University. He led us through the intricacies of that
distribution theory with great enthusiasm. There was no doubt that Sam enjoyed theory, even if
the students did not always fully appreciate it. But Sam’s contributions to theory and statistical
methods were rooted in applications related to his consulting responsibilities. He described his
work environment and the role of theory in an article on the National Institutes of Health [1]:
‘One thing was not subject to any debate, namely, we were at the NIH, in accordance with
Harold Dom’s directive, in order to provide the best statistical advice to questions posed to us
by Intramural scientists... A secondary objective was, research in methodology and theory.’

It is difficult to summarize Sam’s many contributions to statistical methods in a short article.
I have chosen three examples that illustrate his role at the interface of theory and application.
But, before turning to these examples, 1 list some of the other areas of statistical methodology
to which he contributed.

Collaborating with Nathan Mantel and Abraham Goldin, Sam developed methods of bioas-
say to study the effects of various doses of antileukaemic agents in mice. Those
innovative analyses allowed for more than one antileukaemic agent [2], a balancing of toxic
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with therapeutic effects [3], and an investigation of the timing of ‘citrovorum rescue,” in which
aminopterin kills the leukaemic cells and folic acid (citrovorum factor) is later used to protect
the host [4].

A citation classic by Greenhouse and Geisser [S] provides methods of analysis for profile
data, which characterize an individual’s pattern of multivariate measurements. They showed
how to use standard analysis of variance (rather than more complex multivariate analysis)
to analyse profile data. They presented modifications of the distribution theory appropriate
to the simpler analysis and defined settings where standard distribution theory for the sim-
pler approach is exact. Sam’s other work on multivariate methods includes papers with Max
Halperin on multiple comparisons {6, 7], such as a method to compare adjusted group means
estimated from an analysis of covariance [7].

Sam played a prominent role as a collaborator and advisor on clinical trials. In view of
the complex aims and conduct of real trials, he discussed the limitations of over-simplified
formal hypothesis testing as the basis of interpretation [8]. Also, he contributed to the theory
of adaptive treatment allocation, designed to reduce the number of subjects assigned to the
inferior treatment [9] and to methods for restricted sequential designs [10, 11].

Among Sam’s other contributions to methods were a paper on the validity of matched
and unmatched cohort and case-control studies [12], work with Nathan Mantel on continuity-
correction [13] and on the equivalence of maximum-likelihood and moment estimators in
probit analysis [14], and work with Joseph Gastwirth to apply biostatistical methods to legal
issues. An application to employment discrimination motivated work on methods for estimat-
ing a common relative risk, rather than relative odds [15], and an extension of the Cornfield
inequality to bound the effects of unmeasured covariates was also applied to issues of em-
ployment discrimination [16].

Although not exhaustive, this brief survey indicates the breadth of Sam’s contributions to
methods and associated applications. We now treat three examples in greater detail.

2. EVALUATION OF DIAGNOSTIC TESTS

Shortly after joining Dr Harold Dorn’s statistical unit in the Division of Public Health Methods
in 1947, the unit (which also included Jerry Cornfield, Nathan Mantel, Jack Lieberman, and
George Deal) was transferred to the National Cancer Institute [1]. Presumably it was Sam
Greenhouse’s turn to answer the consultants’ phone when Dr John Dunn called for statistical
advice on the evaluation of diagnostic tests for cancer [17,18]. This consultation led to a
paper that is still widely cited and used. I will recast the notation and terminology in today’s
parlance, but the concepts and formulas are due to Greenhouse and Mantel [19].

Suppose G is the distribution function for assay values in a healthy (control) population and
F is the distribution function for diseased individuals (cases). Using as cutpoint for declaring
‘diseased’ the 95th percentile, £y95 =G~1(0.95) would yield 95 per cent specificity for an
assay result X deemed positive if X > &y95. The corresponding sensitivity, namely P (declare
‘diseased’ | diseased), would be 1 — F{G~1(0.95)} =1 — F(&y95).

The first problem Greenhouse and Mantel considered was whether the assay X had promise.
A good assay should have little overlap among cases and controls in order to be highly
discriminating. Therefore Greenhouse and Mantel considered the null hypothesis G=1(0.95)<
F~1(0.10), which defined a good assay because the assay would have sensitivity at least

Published in 2003 by John Wiley & Sons, Ltd. Statist. Med. 2003; 22:3301-3308



SAM GREENHOUSE’S PUBLICATIONS 3303

0.90 based on a cutpoint that assured specificity 0.95. The null hypothesis would be rejected
in favour of G~!(0.95)>F~'(0.10), an indication of a bad test with sensitivity less than
90%. Greenhouse and Mantel developed the necessary parametric theory and sample size
requirements under the assumption that F and G were normally distributed. They also gave
a non-parametric version of this test based on the distribution of percentiles in independent
samples from G and F.

Greenhouse and Mantel then turned to the comparison of two diagnostic assays, X; and
Xz, with respective marginal distributions 7, and F, in cases and G; and G, in controls.
As before, we assume an assay is positive if it exceeds a cutpoint. Mantel and Greenhouse
pointed out that a fair comparison of sensitivities of X; and X; could only be made if they
were operating at the same specificity. The cutpoint (percentile) required to yield specificity
0.95, say, needed to be estimated from control samples and was thus itself a random variable.
This additional variability needed to be taken into account when testing the null hypothesis
of equal sensitivity:

1 = Fi(&) =1-F2(&2)

where £, and &, are the 95th percentiles of Gy and G, respectively.

Greenhouse and Mantel distinguished two types of sampling. The assays X; and X could
be studied in independent samples of cases and controls, or X; and X; could each be measured
in pairs in the same samples of cases and controls. To cover the latter instance, let F(x,x;)
be the joint distribution in cases with Fi(x;)=F(x;,00) and F>(x;)=F(c0,x;). Define the
joint distribution G similarly for controls. The null hypothesis of equal sensitivity can be

tested usmg [Fl{G 1(0.95)} — FZ{G 10.95)}1V 2 where ¥ estimates the variance and F7,

F 2, Gl, G, are estimates of the marginal distributions. Greenhouse and Mantel gave results
both for the case of normally distributed X; and X; and for the non-parametric analysis, and
they treated both independent and paired assay sampling. For paired data, on n cases and m
controls, we can express the variance ¥ for empirical (non-parametric) distributions F, Fy,
Gl, and G, in terms of densities such as f1 corresponding to F; as

F(&H{1 - F(&)} " F(&){1 - F(&)}  2F (L&) — Fité)R(&)

n n n
F1ED\? (0.95)(0.05) | ( f2(&)\? (0.95)(0.05)
* (gl(él)) m (gz(éz)> m
_2f1ED &) F(é, &) — (0.05)
g1(&1)g2(&2) m

In this expression the first three terms correspond to binomial variation assuming the per-
centiles £; and &, were known, but taking the sample correlations from pairing into account.
The last three terms represent additive random variation resulting from the need to estimate
the percentiles (cutpoints) & and & from data on non-diseased subjects. A related interpreta-
tion is to regard the first three terms in this expression as approximating the expected value of
the conditional variance, given estimates of the cutpoints; the second three terms correspond
to the variance of the conditional expectation given the empirical cutpoints.
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Introduce labeled albumin
into compartment 1

and follow time course

of concentration levels

Figure 1. A three-compartment kinetic model for albumin.

This paper offered many helpful insights concerning methods for evaluating diagnostic tests
and is widely cited and used by current researchers.

3. MODELS FOR THE INTERPRETATION OF EXPERIMENTS
USING TRACER COMPOUNDS

The availability of radioactive labelling techniques in the 1950s enabled an explosion of
biochemical and physiological research into the distribution and flows of proteins and other
molecules throughout the body. For example, albumin labelled with 7'3' might be injected
into the blood stream, represented as compartment 1 in Figure 1. In Figure 1, compart-
ment 2 might represent the interstitial space, which is in communication with the vascular
component, and compartment 3, which is an absorbing state, represents excretion of albumin
in urine and feces. The diminution of the radioactive label from compartment 1 over time
gave information on the size of the vascular compartment and compartment 2 and on the
rate of flows among compartments. Mathematical models were central to the interpretation of
such data, and physicists, such as Mones Berman at NIH, helped define the key assumptions
underlying such models, develop deterministic solutions to model systems, and determine what
kinds of experiments were needed and on which compartments in order to identify the model
parameters [20].

Lewallen et al. [21] used such methods to study the effects of thyroid disease on albumin
metabolism based on a 3-compartment model. Although this brilliant article represented the
state of the art in 1959 and produced important physiologic findings, curve-fitting methods
that account for measurement error were ad hoc: ‘The slowest component was obtained first
by a least squares fit of the terminal linear portion of the plot. The remainder of the curve
was smoothed by eye, and the two additional components were obtained by serial subtraction
in the usual way.’

In an important article that introduced biostatisticians to this field, Cornfield, Steinfeld (who
became Surgeon General of the United States Public Health Service in 1969), and Greenhouse
carefully reviewed the underlying assumptions of kinetic modelling in biological systems and
then turned to the difficult issue of model fitting for the 3-compartment system in Figure 1
{22]. In particular they inquired why standard numerical approaches often failed.

The solution of deterministic differential equations for the amount of labelled substance in
compartment 1 of Figure 1 at time ¢, y(t;), is Ay exp(—A1t;) + Ay exp(—Azt;). Assuming that
the measurements of y(¢;) are subject to independent mean zero errors with variances 1/w;,
Cornfield, Steinfeld, and Greenhouse sought to estimate 4;, 4>, 4, and A, by minimizing the
weighted squared deviations S = Zw;{y(t;) — 4) exp(—A1t;) — Az exp(—At:)}2. Tt follows from
symmetry considerations and an examination of the four estimating equations obtained by dif-
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ferentiation with respect to the parameters that if 0 =(A, 42, Ay, iz) is a global minimum of S,
than so is 0* = (Af,A;,lf,l;);(ﬁz,,i l,iz,il). Cormnfield, Steinfeld, and Greenhouse credited
Nathan Mantgl for this observation, but they took the analysis further. If 0= (/i\,/iz, ):1, ):2) and
0* = (A4, A, A5, A1), each minimize S, then 8S/0G=0 and the determinant D= |02S/06% >0
at these two points. It follows that there must be at least one stationary point 8** satisfying
85/00 =0 between 6 and 6*. Iterative methods with initial values of @ near 6** will converge
to a local minimum, a maximum, or a saddle point. Further analysis revealed that 8** is likely
to be a saddle point in most applications. At a saddle point, D < 0. From the continuity of
D, it follows that there must be a point between 6 and 6** and a point between 8** and
0* at which D=0, Iterative procedures such as Newton’s method fail when D=0 because
the matrix of derivatives of the estimating equations is not invertible there. The analysis thus
revealed at least two points where standard iterative procedures fail and at least one stationary
point 8** which is typically a saddle point and to which standard iterative procedures with
nearby starting values converge. The paper proceeds to suggest ways to avoid misleading
solutions and failures of iterative methods,

For the practicing biostatistician, the paper lays out the basic principles of analysis for
labeling experiments and highlights potential pitfalls of statistical curve-fitting,

4. MULTIVARIATE RELATIVE RISK FUNCTIONS FOR CASE-CONTROL STUDIES

In 1962, Cornfield considered how to estimate the risk of coronary heart disease (CHD)
from cohort data as a function of blood pressure and cholesterol levels [23]. Assuming that
X; = log,, (cholesterol) and X, = log,, (systolic blood pressure —75) were bivariate normal
with mean y; and covariance X in those with CHD and with mean puq and covariance X
in subjects without CHD, he showed that the log odds of disease given X; and X, equaled
o+ BiX; + B2X,. Here

«= log,[P(CHD)/{1 —~ P(CHD)}] - (1 + )2

and B’ =(f1,B2) = (1| — g )S"~!. Cornfield pointed out that the logistic model above included
quadratic terms and a product in X; and X; if the covariance X differed in those with and
without disease. Note that the probability of disease in the cohort, m; = P(CHD), is needed to
estimate o, but not the log relative odds parameters ff; and f,. Cornfield substituted means i,
and fi, from CHD and non-CHD subjects, respectively, and a pooled estimate of covariance

3} from the two samples, into the previous formulas to estimate B, =6.14 and Bz =.29. This
analysis showed how combined elevations of blood pressure and cholesterol increased risk
dramatically.

Subsequent workers pointed out that the logistic risk model for cohort data can arise from
distributions other than the normal [24,25]. This observation suggested that a more robust
analysis would be based on the assumption that the log odds of disease was linear in covari-
ates X in the general population, rather than the more stringent assumption of multivariate
normality in diseased and non-diseased subjects. Walker and Duncan developed maximum
likelihood procedures for cohort data under the logistic model [26], and Efron quantitated the
loss of statistical efficiency incurred by using the logistic model when the multivariate normal
discriminant model held [27].
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Seigel and Greenhouse felt constrained by available contingency table methods for case-
control studies to analyse effects of continuous exposures or multiple covariates, and they
evaluated linear regression methods and logistic models based on Gaussian linear discrimi-
nation instead [28]. Indeed, they followed the lead of Cornfield [23] by assuming that the
covariate distribution was normal in cases and (separately) in controls with respective means
y; and yo and with common covariance Y. They observed that true log relative odds, fi,
could be estimated from case-control data with the formula ﬁ’ = - ,120)2_1 given by
Comnfield; in this expression, [, and [, are estimated as the mean covariate values in cases
and controls respectively, and % is estimated from the pooled within-group covariances. Siegel
and Greenhouse also noted that the logistic intercept could not be estimated from case-control
data because the probability of disease in the source population, n;, was usually unknown.

Siegel and Greenhouse were concerned that the normality assumptions might be misleading,
and they analyzed the special case of a dichotomous covariate X =1 or 0. If the numbers of
cases with X' =1 is a, the number with X =0 is b, the number of controls with X =1 is c,
and the number of controls with X =0 is d, then the maximum likelihood estimate of f is
In(ad/bc). Seigel and Greenhouse noted that the Gaussian discriminant model estimate of ﬁ in
this case was (ad — bc)T/{ab(c+d)+cd(a+b)}, where T =a+ b+ c+d. Thus, the Gaussian
discriminant model yields biased estimates of the odds ratio. The bias is not always severe,
however. For example, with @ =30, 6=20, ¢ =10, and d =20, the maximum likelihood esti-
mate of f§ is log(30 x 20/20 x 10)= log(3) = 1.099, whereas the normal discriminant estimate
is 1.1428. The former corresponds to an odds ratio of 3.00, whereas the latter corresponds to
an odds ratio of exp(1.1428)=3.136.

At about the same time Seigel and Greenhouse were working on this topic, Anderson
[29] considered the implications of assuming that the logistic risk model held in the general
population, rather than assuming multivariate normality in cases and controls. For discrete co-
variates, X, he showed that the estimate f of log relative risk that maximized the retrospective
likelihood from case-control data was the same estimate that one would obtain by pretending
that the case-control sample represented a prospective cohort study. He also showed that the
variance of f} was the same as would be obtained in such a cohort study. Prentice and Pyke
[30] later proved these results for continuous covariates. In 1973 Mantel showed that if one
assumed that the logistic risk model held in the general population, then it would also hold
in the selected case-control sub-sample of that population, but with an altered intercept [31].

Thus, there were two themes in the case-control literature just as in the cohort literature,
one based on an assumption of multivariate normality in cases and controls [28], and another
based on an assumption of a logistic risk model in the general population. The paper by Seigel
and Greenhouse was important in identifying a need for regression methods for case-control
data, showing how the normal discriminant approach could be used for this purpose, and
warning the user about the impact of violations of assumptions in that model.

5. DISCUSSION
I have illustrated through a few examples Sam’s ability to identify problems of practical
importance and to develop the necessary theory and methods to address them. Much of

his methodological work remains important today, because it addressed problems of lasting
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practical relevance. In an obituary published in AmStat News [32], John Lachin and Joel
Greenhouse wrote of Sam: ‘However, if one asked Sam about the truly important work he
was doing, he would inevitably talk about his scientific collaborations. For it was through the
practice of statistics, he believed, that statisticians made their biggest impact on science, and
it was through scientific collaborations that the important statistical problems were identified.’
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