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Abstract

Struewing et al. (1997) used the kin-cohort design to estimate the risk of breast cancer in
women with autosomal dominant mutations in the genes BRCA1 and BRCA2. In this design,
a proband volunteers to be genotyped and then reports the disease history (phenotype) of his
or her first-degree relatives. Gail et al. (1999) developed maximum likelihood estimation of
parameters for autosomal dominant genes with the kin-cohort design. In this paper we examine
the effects of violations of key assumptions on likelihood-based inference. Serious overestimates
of disease risk (penetrance) and allele frequency result if people with affected relatives tend to
volunteer to be probands more readily than people without affected relatives. Penetrance will
be underestimated if probands fail to report all the disease present among their relatives, and
serious overestimates of penetrance and allele frequency can result if probands give false positive
reports of disease. Sources of familial disease aggregation other than the gene under study result
in overestimates of the penetrance in mutation carriers, underestimates of penetrance in non-
carriers, and overestimates of allele frequency. Unless sample sizes are quite large, confidence
intervals based on the Wald procedure can have subnominal coverage; limited numerical studies
indicate that likelihood ratio-based confidence intervals perform better. Published by Elsevier

Science B.V.
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1. Introduction

Much of genetic epidemiology has been concerned with inferring properties of genes
that could be hypothesized, but not measured, by using segregation analysis (Elston and
Stewart, 1971). The advent of techniques to identify and measure specific mutations
allows one to estimate the effects of mutations on disease risk directly. Such studies are
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useful for determining risk in the general population, because highly affected families
used to identify genetic mutations may yield misleading estimates of disease risk.

Gail et al. (1999), hereafter referred to as GPBC, compared three population-based
designs for estimating the penetrance of an autosomal dominant mutation, namely the
probability that a mutation carrier would develop disease. They discussed a cohort de-
sign, in which the disease status of mutation carriers is determined by medical surveil-
lance of the carriers, and a population-based case—control design. In the latter design,
the genotype distribution of representative diseased subjects (cases) is compared with
that of representative non-diseased subjects (controls), and information on the proba-
bility of disease in the population is added to estimate penetrance from Bayes’ theorem
(Cornfield, 1951).

The third design GPBC considered was developed by Wacholder et al. (1998),
who called it the kin-cohort design. Volunteers with or without disease are genotyped,
just as in a case—control design, but, in addition, one inquires about the disease sta-
tus (“phenotype”) of first-degree relatives of the volunteer (the “proband”). Because
the distribution of phenotypes in relatives of probands who are mutation carriers is
a mixture of distributions of carriers and non-carriers, and because the distribution
of phenotypes in relatives of non-carrier probands has different mixing proportions,
it is possible to extract information on the underlying penetrances for carriers and
non-carriers from these data (Wacholder et al., 1998). Struewing et al. (1997) used
the kin-cohort design to demonstrate that mutations of the genes BRCA1 and BRCA2
carry lower risks of breast cancer than previously estimated from families with many
affected members.

In the kin-cohort design, information on other members of the proband’s family
would ordinarily include phenotype and might, in special studies, also include genotypes
of some relatives. Phenotypes could be quantitative traits, time-to-disease-onset data, or
dichotomous outcomes. We restrict attention to dichotomous outcomes, although GPBC
treat the parametric case of time-to-response data as well.

Special assumptions underlie a standard likelihood analysis of the kin-cohort
design, as described by GPBC, who used the term genotyped proband design instead of
kin-cohort design. These assumptions, some of which could be relaxed or modified, are

(A1) risk follows an autosomal dominance pattern, in which carriers of the mutant
allele have a chance (penetrance) ¢; of developing disease and non-carriers have
penetrance g;

(A2) the mutant allele, 4, and normal allele, @, are in Hardy—Weinberg equilibrium,
and mating is at random in the population;

(A3) conditional on genotype, a relative’s phenotype is independent of the phenotypes
of the proband and of other relatives;

(A4) probands are representatives of other members of the population with the same
phenotype;

(AS5) disease status is determined without error; and

(A6) sample sizes are large enough to justify standard asymptotic theory.
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In this paper, we review the likelihood analysis for the kin-cohort design and investigate
the effects of violations of these assumptions.

For concreteness, we assume that the proband is a mother with two daughters, as
would be relevant to studies of the breast cancer genes, BRCA1 or BRCA2. Very
similar results would hold for rare alleles, however, if the proband were a daughter,
instead (see GPBC). Moreover, this example applies to any autosomal dominant disease
for a proband and two susceptible first-degree relatives.

2. Methods

Let go=1 or 0 depending on whether the mother carries a mutant allele 4 or not. If
q is the frequency of 4 in the population, it follows from Hardy—Weinberg equilibrium
that P(go = 1) = ¢* + 2g(1 — gq) and P(go = 0) = (1 — g)*. These three terms in ¢
correspond to genotypes A4, Aa and aa, respectively. Let g;; =1 or 0 depending on
whether the first daughter carries 4 or not, and let gi2 =1 or 0 depending on whether
the second daughter carries 4 or not. Let the phenotype indicators Yo, Y1; and Yy2 be
1 or 0 depending on whether the mother or two sisters have disease or not.

The likelihood for a given family is P(¥1y, Yi2g0|Yo), which, from Assumption (A3),
reduces to

P(go|Yo)P(Y11, Y12|g0)- (1)

The term P(go|Yo) is used instead of P(go, Yo) because we are willing to assume that
probands are representative, conditional on their disease status, but not uncondition-
ally. This allows us, for example, to include all available probands with Yo =1 but
only a small fraction of those with Yo = 0. We use the term P(Yy1, Y12|go) instead of
P(Y11, 12|90, Yo), because under the conditional independence Assumption (A3), Y1
and Y, depend on the proband only through the genotype of the proband.

From Bayes’ theorem

P(go =11Yo = 1) = {¢* +24(1 — D)}$1/[{q" +24(1 ~ 9)}d1 + (1 — 9)* o]
and a similar expression can be worked out for P(go = 1|Yp = 0).
From conditional independence

P(Y11,Yi2lg0) = 3. P(Yuilgh1 YP(Y12]g12)P(g11,912190);
gan.giz

where, for example, P(Y;; = l|g11 = 1) = ¢y. The quantity P(g11,412|go), which is a
function of g but not ¢; or ¢o, is obtained from standard Mendelian calculations as
in GPBC.

Thus, the likelihood is the product over families of Eq. (1), and standard methods
can be used to obtain the maximum likelihood estimates (mles) of ¢;, ¢o and g.
GPBC used general numerical methods to maximize the log-likelihood and numerical
differentiation of minus twice the log-likelihood, evaluated at the mles <i31,q30,é, to
estimate the information matrix and hence the standard errors of 431,430,(}.
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We calculated 95% Wald confidence intervals for ¢, for example, as q31 =
+1.96{ 171472(431)}1/2. One could also produce a test-based confidence interval for ¢,
based on the profile likelihood in ¢; with limits determined by minus twice the
log-profile-likelihood ratio = 3.84. Patefield (1977) describes properties of the profile
likelihood, which he termed the maximized likelihood function. To determine whether
this profile-likelihood confidence interval covers the true penetrance, ¢, one need only
test whether minus twice the log-profile-likelihood ratio that compares ¢31 with ¢y is
less than 3.84.

We simulated data by selecting a mother and father at random from the general
population and applying standard Mendelian genetics to generate go, g1, and g2
Then Bernoulli values Yo, Y11 and Y;, were generated, conditional on go, g11 and gi2,
respectively. In this way, a large number of families were generated. From these fam-
ilies, a certain number was sampled at random without replacement from those with
Yo=1 and from those with Yy =0. Simulations were conducted using programs written
in GAUSS, Version 3.1 (1993).

Specific methods for simulations are described with corresponding results. In the stan-
dard case, however, a sample of 25,000 families with specific genotypes is generated by
assuming random mating with respect to the disease gene, which is in Hardy—Weinberg
equilibrium, and Mendelian transmission of genes to offspring. Then, given such geno-
types and ¢ and ¢1, pbenotypes are generated. A random sample of probands and their
families is selected such that 10% of the probands are cases (Yp=1). The total number
of selected families was chosen to yield a precision on ¢, of 1.96 x { Var(¢, )}'/2=0.05,
or +5%, as in GPBC.

3. Results
3.1. Small sample behavior

The first example is reminiscent of data for breast cancer (Claus et al., 1991) to
reflect a rare autosomal dominant gene (g = 0.01) with high penetrance, ¢; = 0.9 for
carriers, and non-negligible risk for non-carriers, ¢o =0.1. If 10% of the probands are
cases, 5893 families are required to achieve +5% precision on qgl. Note from simulation
1 in Table 1 that the estimates are unbiased and the coverage of both the Wald and
likelihood ratio-based confidence intervals are near the nominal 0.95 level. Histograms
of the distributions of 43,, dA)O, and § are symmetric about the population parameter
values (Fig. 1). As the sample sizes are reduced, there is little evidence of bias in
the estimates (simulations 2 and 3), but the coverage of the Wald confidence interval
degrades seriously. Histograms corresponding to simulation 3 with 737 families in the
sample indicate skewness to the right in the distributions of 430 and 4 and a distinctly
non-normal distribution of 431, with a point mass at the boundary 431 = 1.0 (Fig. 2).
Indeed, d31 was 1.0 in 222 of 1000 simulations. It is remarkable that the coverage of
the likelihood ratio confidence interval is so good in this case.
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Table 1 o
Small sample behavior of ¢;, ¢4 and §°

Simulation True parameter values No. Design
probands precision
on ¢; (%) Mean estimates

Coverage of
confidence intervals
for ¢

Lo b 4 Wald Likelihood
ratio
1 ¢1 =09, ¢o=0.1, g=0.01 5893 +5 0.900 0.100 0.010 0.932 0.945
2 ¢1 =09, ¢o=0.1, g=001 1474 +10 0.898 0.100 0.010 0.891 0.923
3 ¢1=09, ¢o=0.1, ¢g=001 737 +14.1 0.905 0.100 0.010 0.773 0.942
4 ¢1=09, ¢o=0.1, g=0.10 577 +5 0.899 0.100 0.100 0.941 0.943
5 ¢1=0.5, ¢o=0.1, g=0.10 1705 +5 0.500 0.100 0.100 0.942 0.928

#Numbers of repetitions in each simulation were, respectively, 5000, 1000, 1000, 4000, and 5000.
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Fig. 1. Histograms of ¢, ¢, and § for samples with 5893 families, 10% of which have case probands.

The corresponding parameter values are ¢; = 0.9, ¢9 = 0.1, and ¢ = 0.01.

With higher allele frequencies (g=0.10), smaller samples are needed to achieve good
precision. Indeed, only 577 families are required with ¢ =0.9, ¢9 =0.1 and ¢ =0.1.
As expected, there is no evidence of bias and confidence intervals have near-nominal
coverage in cases with £5% precision (simulations 4 and 5 in Table 1), and
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Fig. 2. Histograms of ¢3,, qSO, and ¢ for samples with 737 families, 10% of which have case probands. The
corresponding parameter values are ¢ = 0.9, ¢ = 0.1, and ¢ = 0.01.
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corresponding histograms indicate symmetric distributions of qASl, qgo, and 4 in these
cases (not shown).

3.2. Selection bias

A major bias can be introduced in kin-cohort analyses if persons with diseased
relatives are more likely to volunteer to be probands than persons without diseased
relatives (Struewing et al., 1997; Wacholder et al., 1998; GPBC). To illustrate this
bias, consider an example with ¢; =0.90, ¢y =0.10 and ¢=0.1. Suppose that mothers
with an affected daughter are twice as likely to volunteer to be probands as are mothers
with no affected daughters and that mothers with two affected daughters are 4 times as
likely to volunteer, regardless of whether the mother is affected or not. A simulation
with 5000 repetitions and 1154 families, of which 10% have affected probands, yielded
average estimates (= standard errors) 0.944(=£0.009) for ¢, 0.150(£0.015) for ¢ and
0.205(40.015) for g. Thus, the penetrances ¢; and ¢y are substantially overestimated,
as is the allele frequency ¢. These biases reflect the increased burden of disease in the
sampled data that results from biased selection of participating probands.



M.H. Gail et al. | Journal of Statistical Planning and Inference 96 (2001) 167-177 173

Table 2

Effects of misclassifying phenotypes of relatives with true ¢ = 0.9, ¢p = 0.1 and ¢ = 0.012

Sensitivity Specificity Coverage of confidence
Mean estimates intervals for ¢,
b, bo g Wald Likelihood ratio

1.00 1.00 0.900 0.100 0.010 0.932 0.945

0.90 1.00 0.873 0.090 0.009 0.884 0.846

1.00 0.90 0.945 0.184 0.017 0.230 0.301

0.90 0.90 0.933 0.174 0.016 0.534 0.617

3Each experiment was based on 1000 simulated repetitions. Each simulation included 5893 families, with
10% having diseased probands; these sample sizes were designed to achieve £5% precision on ¢,.

3.3. Misclassification of disease status of relatives of probands

An advantage of the kin-cohort design is that one can sometimes obtain information
on the disease status (or phenotypes) of relatives simply by interviewing the proband.
This approach can lead to misclassification of relatives’ phenotypes, however. To in-
vestigate such misclassification, we define sensitivity as the probability that a proband
will correctly report a diseased relative as diseased and specificity as the probability
that a proband will correctly report a non-diseased relative as non-diseased. We con-
sider the effects of imperfect sensitivity and specificity for ¢, =0.9, ¢¢=0.1, ¢=0.01
and with 5893 families selected to yield precision +5% for ¢;. Table 2 reports the
results of 1000 simulations for each combination of sensitivity and specificity.

With sensitivity 0.9 and specificity 1.0, estimates of ¢ and gy are downwardly biased
by 10% (Table 2), and estimates of ¢; by 3%. With sensitivity 1.0 and specificity 0.9,
the average values of d)], ¢0 and g are 0.945, 0.184, and 0.017, indicating a substantial
upward bias in each parameter estimate. A similar upward bias is seen when both the
sensitivity and specificity are 0.9 (Table 2). In this setting

P(Yo=1)=¢1P(go=1)+ ¢oP(go=0)=0.9(1 — 0.99%) +(0.1)(0.99*)=0.1159.

Thus even a modest decrease in specificity leads to an important number of false
positive results and inflated estimates of penetrance and allele frequency, g.

3.4. Residual familial correlations induced by factors other than the mutation
under study

The analyses of kin-cohort data in GPBC, Struewing et al. (1997) and Wacholder
et al. (1998) explicitly or implicitly assume conditional independence of phenotypes,
given genotypes (Assumption (A3) in Section 1). This assumption is also used as
the starting point for most segregation analyses, although some models for segrega-
tion analysis also allow for the possibility of residual familial aggregation from other
sources (see e.g. Li and Thompson, 1997). In unpublished work, by R. Carroll, D. Pee,
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Table 3
Effects of residual familial correlations induced by factors other than the mutation (4) under study, with

marginal penetrances P(Y =1|g=1)=0.9 and P(Y = 1|g = 0) = 0.1 and with g =0.01%2

72 {l+exp(—u)}~! {1 +exp(—m)}~"  Average value of Coverage of confidence
interval for ¢,
é, b0 § Wald  Likelihood ratio
0 0.900 0.100 . 0.900 0.100 0010 0932 0945
0.5 0916 0.084 0910 0.098 0.011 0.941 0.938
1 0.928 0.072 0.917 0.096 0011 0.928 0.917
2 0.947 0.053 0.933  0.093 0012 0933 0.889
4 0.968 0.032 0.948 0.087 0015 0909 0.818

“Each experiment included 1000 simulations with probability of disease determined by the logistic random
effects model in Section 3.3 with parameters y; and 72 for g=1 and o and 72 for g = 0.

J. Benichou and M.H. Gail, it was shown that there is evidence of such residual cor-
relation in a sample of the data analyzed by Struewing et al. (1997). To the extent
that family members share exposure to measured risk factors for the disease in ques-
tion, residual correlation can be accounted for by covariate adjustment using regression
models and by assuming that phenotypes are conditionally independent given genotypes
and measured covariates. Residual familial correlation can also result from unmeasured
shared exposures or risk factors, however, such as other unidentified mutations segre-
gating in the family or shared but unmeasured dietary habits.

To allow for such unmeasured familial factors, we considered the logistic random

effects model
P(Y = 1|g,b) = {1 + exp(—py + &)}, (2)

where p; and gy correspond to g=1 or 0 and where b is a mean zero normal variate
with variance 12. Values of b are drawn independently for each family. Each family
member is influenced by the same random familial effect, b, in addition to his or her
genotype. In particular, Y11, Y15, and Yy are each influenced by the random familial
effect. For each value of 12, we calculated u; and g so that the marginal probabilities
P(Y=1]g=1)=09 and P(Y =1|g=0)=0.1, and we assumed ¢ =0.01. Transformed
values of y; and po are shown in Table 3 and indicate that as 12 increases, more
extreme values of y; and yo are needed to maintain the marginal probabilities above.
For gi1 =1, g12 =1, the intra-familial correlations comparing two family members are
0.047, 0.092, 0.171, and 0.287 for t>=0.5,1,2 and 4, respectively. For g1 =1, g;2=0
these correlations are 0.036, 0.058, 0.083, and 0.102, and for g1, =0, g;, =0, they are
0.047, 0.092, 0.171, and 0.287.

As the value of 72 increases, estimates of ¢;, ¢ and g based on conditional in-
dependence become increasingly more biased (Table 3). In fact, d31 overestimates ¢,
4, overestimates ¢, and 930 underestimates ¢o. Because the simple genetic model is
forced to account for genetic and residual familial correlation, it exaggerates the genetic
effects by overestimating P(Y|g = 1), underestimating P(¥|g = 0) and overestimating

the allele frequency, g.
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We performed a similar simulation to study the effect of an unidentified gene with
alleles ¢ and C segregating independently of the gene with alleles a and 4. We assumed
P(4)=0.01=g, as before and P(C)=0.01626. We let h=1 if the subject had genotype
CC or Cc, and 0 if cc. To maintain the original probabilities P(Y = 1|g = 1) = 0.9
and P(Y =1|g=0)= 0.1, we assumed that the joint effects of the two genes satisfied
P(Y=1|g=0,A=0)=0.080, P(Y =1|g=0,k=1)=0.700, P(Y—llg—l h=0)=0.897,
and P(Y =1|g=1,Ah=1)=0.990. The average values of ¢,, qSO and 4 (with standard
errors) in 5000 simulations under the naive model ignoring the second gene were
0.913(0.023), 0.098(0.003), and 0.0108(0.0011). Thus, the bias is very slight (and
not statistically significant in these studies), because the ignored allele, C, is so rare.
This result is different from that for a conventional segregation analysis, in which the
combined effects of 4 and C and a combined allele frequency will be estimated, rather
than the average effect and allele frequency of A alone.

We also considered a common mutation with P(C) = 0.5 and with P(¥ = 1|g =0,
h=0)=0.05714, P(Y = 1|g=0,h = 1) = 0.11429, P(Y = l|g = 1,h = 0) = 0.62857,
and P(Y = l|g = 1,h = 1) = 0.99048. These parameters yield marginal probabilities
P(Y=1g=1)=09 and P(Y = l|g = 0) = 0.1, as before. Simulations based on
5000 repetitions gave average estimates of d)l, d)o and 4 (with standard errors) of
0.900(0.027), 0.100(0.003), and 0.010(0.001). Thus, even ignoring a common gene in
this example induced negligible bias in estimates of P(Y = 1|g=1), P(Y = 1|g = 0),
and gq.

3.5. Violation of Hardy—Weinberg equilibrium because of stratification

We examined the bias that results when the population is divided into two strata,
within each of which mating is at random, but between which no mating occurs.
In such a population, Hardy—Weinberg equilibrium holds only within strata. We can
calculate the asymptotic bias that arises from assuming Hardy-Weinberg equilibrium in
the entire population by taking expectations of the misspecified score equations from
Eq. (1) with respect to the true stratified probability distribution.

To study the case of a rare allele, we assumed stratum frequencies 0.2 and 0.8,
with respective allele frequencies 0.046299 and 0.001131 chosen to preserve P(g=1)
=1— (1 - 0.01)> = 0.01990 in the entire population. The allele frequency in the
whole population is 0.01016. The mles (Z)l, qgo, and 4 converge, respectively, to 0.9025,
0.0997, and 0.0998, which are quite close to the true values 0.9, 0.1 and 0.01016. Thus,
for rare alleles, such stratification and failure of Hardy—Weinberg equilibrium induce
little bias.

With larger allele frequencies, however, the bias is more noticeable. If the respective
allele frequencies in the previous strata were 0.630726 and 0.010854, then the allele
frequency in the whole population would be g = 0.1348. In this case ¢?1, ¢30, and ¢
converge, respectively, to 0.914, 0.118, and 0.1125 instead of the proper values, 0.9,
0.1, and 0.1348. Thus stratification has noticeable but small effect on ¢1, ¢0, and 4,
even for larger allele frequencies.
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4. Discussion

In this paper we have examined violations of some of the assumptions underlying
maximum likelihood analysis of the kin-cohort design. Although these numerical stud-
ies cover a limited range of the parameter space and concentrate on the important
case of rare alleles with high penetrance, they indicate that some violations seriously
distort the findings. In particular, if probands tend to self-select for study because they
have diseased relatives, estimates of penetrance and allele frequencies can be seri-
ously upwardly biased. Population-based case—control studies and cohort studies are
much less affected by such selection bias, as discussed by GPBC. Misclassification of
relatives’ phenotypes can also induce serious bias, especially when unaffected relatives
are reported as diseased (Table 2).

Other violations are less serious, such as the effects of failure of Hardy—Weinberg
equilibrium from stratification of the population (Section 3.5).

Large samples may be required to attain good precision for estimates of 431, but
¢1, d)o and ¢ seem to be nearly unbiased estimators even for smaller samples for which
¢~] is less precise and is not normally distributed. If samples are small enough that ¢1
falls on the boundary q’)] =1 frequently, then the coverage of the Wald confidence
interval can drop below nominal levels. A test-based confidence interval derived from
the profile likelihood ratio test for ¢»; had near-nominal coverage in such cases, however
(Table 1).

Failure of the conditional independence Assumption (A3) in Section 1, can lead
to bias. Strong familial random effects induce overestimates of P(Y = 1|g = 1) and
g and underestimates of P(Y = 1lg = 0) (Table 3). If such effects are induced by
rare co-segregating genes, they have little influence on estimates of P(Y = 1|g = 1),
P(Y =1|g=0) and g. In this respect, a kin-cohort design with measurements of the
probands’ genotypes, A4, Aa or aa, is more robust than a simple segregation analysis,
which will lump the effects of unidentified co-segregating genes together with the effects
of the gene of interest. It is encouraging that ignoring a more common co-segregating
gene with allele frequency 0.5 did not induce appreciable bias in estimates of P(Y =
llg =1), P(Y =1|g = 0), and q. Nevertheless, the possibility of residual familial
correlation cannot be ignored (Table 3), and more elaborate models that allow for
residual familial correlation beyond the gene of interest, such as the frailty model of
Li and Thompson (1997), could be incorporated in kin-cohort analyses to weaken the
conditional independence assumption.
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