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Power and sample size considerations are critical for the design of epidemiologic studies of gene-environment
interactions. Hwang et al. (Am J Epidemiol 1994;140:1029-37) and Foppa and Spiegelman (Am J Epidemiol
1997;146:596-604) have presented power and sample size calculations for case-control studies of gene-
environment interactions. Comparisons of calculations using these approaches and an approach for general
multivariate regression models for the odds ratio previously published by Lubin and Gail (Am J Epidemiol
1990;131:552-66) have revealed substantial differences under some scenarios. These differences are the resuit
of a highly restrictive characterization of the null hypothesis in Hwang et al. and Foppa and Spiegelman, which
results in an underestimation of sample size and overestimation of power for the test of a gene-environment
interaction. A computer program to perform sample size and power caiculations to detect additive or
multiplicative models of gene-environment interactions using the Lubin and Gail approach will be available free
of charge in the near future from the National Cancer Institute. Am J Epidemiol 1999;149:689-92.
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The evaluation of gene-environment interactions is
becoming a central theme in epidemiologic studies of
complex diseases with both genetic and environmental
determinants (1). Khoury et al. (2) and Ottman et al.
(3) have proposed several biologically plausible mod-
els to describe the relation between genetic and envi-
ronmental determinants of disease. Power and sample
size considerations are critical for the statistical evalu-
ation of these models of interaction. Two recent papers
have presented power and sample size calculations for
such studies. Hwang et al. (4) presented calculations
for binary genetic and environmental factors based on
a previously published formulae (5). Foppa and
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Spiegelman (6) presented formulae for a binary genet-
ic factor and an environmental exposure with multiple
categories. Most of the sample size calculations pre-
sented by Hwang et al. (4) correspond to a model of
interaction where the environmental factor influences
the risk of disease, whereas the genetic factor exacer-
bates the effect of the environmental factor but does
not have an effect on disease risk in the absence of the
environmental factor (pattern 2 in Khoury et al. (2) or
model B in Ottman et al. (3)). On the other hand, cal-
culations presented by Foppa and Spiegelman (6) cor-
respond to a model of interaction where both the
genetic and environmental factors increase the risk of
disease, and the combined effect of both factors is larg-
er than would be expected under a multiplicative
model (pattern 4 in Khoury et al. (2) or model E in
Ottman et al. (3)).

Lubin and Gail (7) have presented power and sam-
ple size formulae for general multivariate regression
models for the odds ratio, which can be used for cal-
culations to detect interactions in logistic risk models.
In particular, the Lubin and Gail formulae subsume the
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design situations discussed by Hwang et al. and Foppa
and Spiegelman in the context of gene-environment
interactions.

Comparisons of calculations using the Lubin and
Gail formulae and the formulac by Foppa and
Spiegelman have revealed substantial differences.
Here, we illustrate these differences for an example
presented in Foppa and Spiegelman’s paper, explain
the source of the differences, and conclude with some
remarks.

FOPPA AND SPIEGELMAN’S APPROACH

For comparison purposes, we use the same notation
and assumptions as Foppa and Spiegelman. Assume D
and G are binary indicators of disease status and genet-
ic susceptibility, respectively, taking values 1 -or O for
presence or absence of the characteristic, and the cate-
gorical exposure F has Q levels taking the quantitative
values 0,1,...,Q — 1. The odds ratio (OR) for the gene
effect in the lowest exposure category is denoted by
OR__, ., The exposure effect for level 1 in non-
susceptible subjects is denoted by OR,_ .. For
increasing exposure levels, the exposure odds ratio is a
power of OR,_ . i.e., the log odds ratio of disease is
a linear function of exposure. The “top-to-bottom
quantile” contrast of the exposure effect in non-
susceptible subjects (OR®, ) 1is defined as
(OR,_,,.,)?". The gene-environment interaction effect
at exposure level 1 is denoted by 6 and the top-to-
bottom quantile interaction effect (6*) is defined as
(6)¢-'. The Foppa and Spiegelman approach (denoted
as the FS approach) can be embedded within the gen-
eral framework of sample size and power based on a

standard multivariate logistic regression model:
Logit [P(D = 1|E,G)] = By + BeE

+ BeG + BicEG, (1)

where B, = In(OR__ ), B, = In(OR_ . ) =
In(OR®, . Y(Q - 1) and B, = In(8) = In(8*)/(Q - 1).
Table 1 depicts the odds ratios for the association
between disease risk and a binary genetic factor and an
environmental exposure categorized in quintiles, when

non-susceptible unexposed subjects are the reference
category.

Table 2 shows sample sizes required to achieve 80
percent power (two-sided test with 5 percent Type I
error) to detect an interaction between a genetic factor
with a 50 percent frequency in the population and an
environmental exposure categorized in quintiles (Q =
5). In this example, the genetic and environmental fac-
tors are independent in the population, OR _ __ is 1.5
and the control to case ratio is one. Table 2 shows that
the study sizes calculated with the FS approach are
lower than the study sizes calculated with the Lubin
and Gail approach (denoted as the LG approach) and
these differences increase with the size of the interac-
tion effect, 0, and, for a given 6, with the size of the
exposure effect among non-susceptible subjects,
OR[bEIG:O'

The differences in the required sample sizes are the
result of a highly restrictive characterization of the null
hypothesis in the FS approach, which, we assert, is
generally not the null hypothesis of primary interest in
most case-control studies.

As indicated in Lubin and Gail (7), the design of a
case-control study to test for an interaction begins by
specifying an alternative hypothesis, denoted as H,, as
the “true state of nature.” This implies the specification
of all parameters in model 1, including the magnitude
of the interaction to detect, B, (or equivalently 6®), as
well as the odds ratios for the main effects for G,
exp(B,) (or OR ), and for E, exp(B,) (or OR®, . =

G=1IE=("? . EG=0 ~
OR ). In addition, [30 must be specified, since

model 1 s a prospective model of disease outcome.
Note that for rare diseases, variations in BO have little
effect on required sample size. For the examples in
table 2, we set 3, = In(0.001), which corresponds to a
disease rate for the baseline categories of 0.001 =
0.001/(1 + 0.001). Thus, the alternative hypothesis for
line 1 of table 2 is H,: B, = - 6.9, B, = In(1.5), B, =
In(1.5)/4, B,, = In(1.5)/4.

"The next step is for the investigator to specify the
null hypothesis, denoted H_. The null hypothesis for
the test of no multiplicative gene-environment interac-
tion, i.e., the odds ratio for exposed susceptibles is the

TABLE 1. Odds ratios (OR) for the association between disease risk and a dichotomous genetic factor

and an environmental exposure classified in quintiles, when non-susceptible unexposed subjects are
the reference group. Odds ratios are based on model 1

E=0 E=1 E=2 E=3 E=4
‘ G=0 1.0 OR_, 6 ORE=2|G=0 =2 ORE=3|G=D = ORth|G=o=
: : (OR., | ae0) (ORL160)° (OR,, Ier=o)4
i G=1 ORG=1 |E-0 ‘ ORG=1|E=0 x ORG=11E=0 X ) OHG=1|E=O X . ORG=1|E=O x
§ E=1|G=0 x8 £2lG=0 0 ORE:sIc‘po %8 ORmE!G:o x 8
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TABLE 2. Comparison between the formulae of Foppa
and Spiegelman (6) and Lubin and Gail (7) to calculate the
minimum sample size to achieve an 80% power to detect a
particular top-to-bottom quartile interaction effect (6%), for a
particular exposure effect among non-susceptibles (OR®
with genetic effect OR = 1.5 and P(G) = 50%*

El a:o)’

G=1|E=0
Total sample size
! ! F Lubi %
o OR%%1c.0 ggga ::&n Difference
Spiegelman Gail
1.50 1.50 6,386 6,580 2.9
3.00 1.50 906 1,020 11.2
6.00 1.50 366 472 22.5
1.50 3.00 6,858 7172 4.4
3.00 3.00 986 1,158 14.9
6.00 3.00 404 561 28.0
1.50 6.00 7,798 8,267 57
3.00 6.00 1,134 1,385 18.1
6.00 6.00 470 696 32.5

* Other parameters were fixed at the values specified in the
text.

product of the individual factor-specific odds ratios, is
specified by H: B,. = 0, or equivalently H: 6® = 1.
The null hypothesis of the test for no interaction in
model 1 does not specify values of the main effect
parameters 3 and B,. H_is an example of a composite
null hypothesis (8). The alternative hypothesis arises
from a 4-dimensional parameter space defined by By
B, B, B,,), while the null hypothesis arises from a 3
dimensional parameter subspace defined by (8, B, B,
B, = 0). The null hypothesis only specifies
B,. = 0; however, sample size and power formulae
depend on the covariance matrix under H , which is a
function of B, B, and B,.

The difference between the LG and the FS
approaches arises from the specification of B, and B,
under the null hypothesis. The LG formulae use the
maximum likelihood estimates (MLE’s) of B and B,
when B, = 0 and the alternative is true, while the FS
formulae use the values for B, and B, specified in the
alternative hypothesis. The need to estimate the para-
meters 3. and B, when B, = 0 can be explained by
thinking ‘about the definition of power. Power is the
probability of rejecting H , given that H, is true. The
test statistic involves the covariance matrix for the
parameters which is a function of B, and B,. Thus, to
obtain the correct sample size and power, the proce-
dure for testing B, , = 0 must use those values of B, and
B, that are most hkely to be observed when H, is true.

“The MLE’s of B, and B, when B, =0 (i. e under
H ) and the H, is true w111 not generally be equal to
their values under H,. In practical terms, if we fit
model 1 with B, =0 using data generated under H,,
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the MLE of exp(B,) will be an “average” of the cate-
gory-specific odds ratios for the genetic effect, i.e.,
(OR_ ), (OR,, % 0"),.. (OR_  x 827) (see table
D). Similarly, the MLE of exp(B ) will be an “average”
of the category-specific odds ratios for the exposure
effect among susceptibles and non-susceptibles. Table
3 shows the values of the odds ratios for the genetic
and environmental factors under H_ when H, is true.
The larger the interaction, the greater the difference in
the odds ratios for the main effects under the null, the
greater the misspecification of the covariance matrix
under H_ in the FS approach, and thus the greater the
difference in the sample sizes between the LG
approach and the FS approach.

Specifying that 3 and B, are the same under the null

and alternative hypotheses, as in the FS approach,
leads to a restricted definition of the null hypothesis,
namely, no gene-environment interaction and specific
values for the main effects odds ratios, i.e., H:B,,
B, =B.* and B_=B*, where “* denotes specrfic Val-
ues, which in the FS formulation equals the values
under the H,. The null is more specific and thus fewer
subjects are needed to reject H .

THE HWANG ET AL. APPROACH

The approach of Hwang et al. (4) for sample size
and power for assessing gene-environment interaction
was defined only for a binary genetic susceptibility
factor and a binary exposure factor, and suffers from
the same limitation as the FS approach. As previously
indicated, Hwang et al. present sample size estimates
corresponding to a model of interaction where the
genetic factor does not have an effect on disease risk in
the absence of the environmental factor. This assump-
tion adds an additional condition to the alternative
hypothesis, namely, OR . = OR = 1 or in the

G=0lE=0 G=1lE=0

TABLE 3. Maximum likelihood estimates (MLE) of OR
and OR®_, . under the null hypothesis of 0* = 1.0 for
different alternative hypotheses

G=1|E=0

Alternative hypotheses Under the nuil hypothesis

(6® = 1.0)
o° ORmEI @=0 ORG=1 le=0 ORmEI G=0 ORG:1 le<0
1.50 1.50 1.50 1.90 1.87
3.00 1.50 1.50 2.99 2.78
6.00 1.50 1.50 5.09 4.29
1.50 3.00 1.50 3.80 1.90
3.00 3.00 1.50 6.02 2.49
6.00 3.00 1.50 10.38 4.75
1.50 6.00 1.50 7.61 1.94
3.00 6.00 1.50 12.14 3.10
6.00 6.00 1.50 2115 5.23
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logistic formulation §; = 0. Model 1 indicates that the
magnitude of the interaction is determined by the com-
parison of the logit in exposed susceptibles with
exposed non-susceptibles. Thus, the estimation of the
effect of exposure in the non-susceptible population is
not informative for the estimation of B, . The test of
the null hypothesis B, = 0 is equivalent to the test of
the null hypothesis of no genetic effect among the
exposed. To test for this pattern of gene-environment
interaction (pattern 2 in Khoury et al. (2) and pattern
E in Ottman et al. (3)), subjects not exposed to the
environmental factor are not required and the sample
size formula for a single binary variable is applicable.
We should emphasize that the estimation of the odds
ratio for exposure in non-susceptibles will often be of
interest; however, it does not provide information on
the nature of the interaction, given this particular alter-
native hypothesis.

CONCLUSION

The approaches used by Hwang et al. (4) and Foppa
and Spiegelman (6) result in an underestimation of
sample size for the test of a gene-environment interac-
tion. The results from these approaches will approxi-
mate the correct power and sample size estimates only
when the gene-environment interaction specified
under the alternative hypothesis is small, or when the
odds ratios for the genetic and exposure effects are
small. Otherwise, the approaches of Hwang et al. and
Foppa and Spiegelman can lead to a substantial under-
estimation of sample size and overestimation of power.

The approaches of Hwang et al. (4) and Foppa and
Spiegelman (6) can only be used to calculate power
and sample size needed to detect an interaction when
the null joint effect of the environmental and genetic
factors is multiplicative. However, other types of sta-
tistical interactions such as when the null joint effect is
additive might also be of interest (9). Calculations for
sample size and power to detect either additive or mul-
tiplicative interactions between genetic and environ-
mental risk factors (continuous or categorical) can be
performed using the general formulae developed in

Lubin and Gail (5). These calculations can be carried
out using POWER included in the computer program
EPITOME (National Cancer Institute, Bethesda,
Maryland). A new version of this program tailored to
perform calculations of interest in studies of gene-
environment interactions is being developed in the
Division of Cancer Epidemiology and Genetics of the
National Cancer Institute, and will be available free of
charge in the near future. A copy of the program
can be obtained by e-mail by sending a message
to brownh@exchange.nih.gov, or by mail by sending
a diskette to the corresponding author, Dr. Garcia-
Closas.
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