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SUMMARY. In the analysis of covariance, the display of adjusted treatment means allows one to compare
mean (treatment) group outcomes controlling for different covariate distributions in the groups. Predictive
margins are a generalization of adjusted treatment means to nonlinear models. The predictive margin for
group 7 represents the average predicted response if everyone in the sample had been in group r. This
paper discusses the use of predictive margins with complex survey data, where an important consideration
is the choice of covariate distribution used to standardize the predictive margin. It is suggested that the
textbook formula for the standard error of an adjusted treatment mean from the analysis of covariance
may be inappropriate for applications involving survey data. Applications are given using data from the
1992 National Health Interview Survey (NHIS) and the Epidemiologic Followup Study to the first National
Health and Nutrition Examination Survey (NHANES I).
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1. Introduction

It is fr:aquently of interest to estimate the average response
associated with different risk factors (or treatments) control-
ling for various covariate imbalances. Consider the analysis of
covariance setting where y;; = o; + Bzij t 5,1 =1,... R,
j=1,...,n;, and with z;; being the covariate for the jth in-
dividual in the sth treatment group. The adjusted treatment
mean for group r is defined as gr — BEr —Z) = ér + Bz,
where the hats represent least-squares estimators, 7 and Zr
are means of the y and z observations in the rth group, and &
is the mean of all the z observations (Snedecor, 1937, Section
12.4). One can interpret the adjusted treatment mean as the
expected response for an individual in treatment group r with
covariate value X = Z or as the average predicted response if
everyone in the sample had been in treatment group r.

For more complicated models, there are various ways to
generalize the notion of a covariate-adjusted outcome. In par-
ticular, one can use a conditional or marginal approach, which
disagree in nonlinear models. For example, for a simple linear
logistic regression model, log{P(y;; = 1)/[1 — P(yi; = 1)]} =
a; + fBz;;, the conditional approach uses exp(&r + Bz)/{1 +
exp(Gr + Bi)} as an estimator of the expected response for an
individual conditional on his belonging to group = and having

covariate value X = Z. Alternatively, one could use

R
n= E ng,
=1

which is an estimator of the predicted response if all the
observations had been treated with treatment r (Lee, 1981;
Makuch, 1982). Lane and Nelder (1982) refer to such quan-
tities as a predictive margin; Chang, Gelman, and Pagano
(1982) describe why this marginal approach may be prefer-
able to the conditional approach.

In this paper, we consider predictive margins estimated
from survey data, the use of which adds two complications.
The first is that covariate adjustments are possible to different
sets of z’s, e.g., the values in the population from which the
data were sampled versus the values in an external popula-
tion. Second, since the observed z’s are from a sample and are
therefore random, their variability needs to be taken into ac-
count when estimating standard errors of predictive margins.
(This is unlike the experimental situation where the z’s are
fixed by the investigator.) As an example, consider the pre-
dictive margin displayed in column 5 of Table 1, estimated
using the 1992 NHIS. This predictive margin, which is based
on the logistic regression analysis given in Table 2, estimates

R g
% Z Z exp(ar + Bzi;) /{1 +exp(ér + Brij)},

i=1j=1
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Table 1
Observed sample-weighted proportion and predictive margins for the probability of digital rectal
ezamination as a function of type of health insurance plan; predictive margins control for age,
family income, sez, race, education, marital status, and self-reported health status (see Table 2)

Predictive
Predictive Predictive margin + SE
Health Sample Observed margin £ SE = margin + SE (Model 2°,
insurance?® size proportion + SE (Model Ib) (Model 2b) pop. = None®)
None 532 13 + .02 .16 + .02 14 + .02 13 £ .02
FFS (large) 1153 .34 £ .02 .33 £+ .02 .33 + .02 27 £ .02
FFS (other) 867 .30 £ .02 29 + .02 .29 + .02 .22 £ .02
HMO/PPO 813 37 £ .02 37 £ .02 37 £ .02 .35 + .03
Public 292 .30 £ .03 .36 + .04 45 + .07 35 £ .05

& Abbreviations indicate the following: None = no private or public health care coverage reported; FFS
(large) = one of the 50 largest fee-for-service plans held privately or through employer; FFS (other) =
fee-for-service plan held privately or through employer but not one of the 50 largest; HMO/PPO = enrolled
in a health maintenance organization or preferred provider organization; Public = Medicaid or other public

assistance program but not an HMO/PPO.
b Models refer to Table 2.

¢ Standardizing population is subpopulation of individuals who belong to the no health insurance group.

the proportion of individuals in the U.S. who would have an
annual digital rectal examination if they had the designated
type of health insurance. The standardizing distribution of co-
variates (ages, income, etc.) is the 1992 noninstitutionalized
U.8. population, i.e., the sampled population. Using the (un-
weighted) covariate distribution of the sampled values would
not be the same because individuals were sampled in the sur-
vey at differing rates. The standard errors displayed in Table
1 incorporate the fact that the covariate distribution of the
population is not known but rather is estimated from the
sampled data.

We give more details about this and another example in
Section 4. Section 2 defines predictive margins in a general
setting, Section 3 describes the estimation of their standard
errors, and Section 5 ends with a brief discussion of why it is
useful to present predictive margins in addition to estimated
regression coefficients.

2. Estimation

We assume that there is a statistical model for the distri-
bution of the response (y) as a function of the risk factor
(r € {1,...,R}), a vector of covariates (z), and a vector of
unknown parameters (6). (If the risk factor is represented by
a continuous variable, then r can refer to a discrete level of
that variable.) We denote the quantity for which we wish to
predict the margin by g(r,z,0). For example, for predicting
E(y) in an analysis of covariance, we have g(r, z,8) = ar + Sz,
and for predicting P(y = 1) in a logistic regression, we have
g(r,z,0) = exp(ar + Bz)/[1 + exp(ar 4+ Bz)]; in both cases,
0 = (o1,...,ag, ) are the regression coefficients. In the non-
survey setting with grouped data {(z;;,¥i;)}, the predictive
margin for category r is defined by

R n;
PM(r) = %Zzy(h zi;,0),

i=1 j=1

ey

where n is the total sample size and 8 is an estimator of the
parameter vector, e.g., least-squares estimators in the analysis
of covariance.

There are various generalizations of (1) that are useful in
different applications involving survey data. As a general ex-
pression for the predictive margin, consider

k
where Zpi =landp; >0

=1

A (@)
and 6 is an estimator of §. The formula (1) is a special case
of (2) with k = n, p; = 1/n, and the covariates (z7,...,2;) =
(11,212, - -+, Z1ngs-- - TR1, TR2, - - -, TRnp)- With linear
models and categorical covariates, the calculation of the pre-
dictive margin is a form of direct standardization (Kalton,
1968), with the p;’s determining the standardizing distribu-
tion. The population quantity we wish to estimate, which we
shall call the population predictive margin, is

k
PM(r) =" pig(r, zi,0),
i=1

K
where Z P,=1and P; >0,

=1

K
PPM(r) =Y Pig(r, Z:,0),
=1

where (Zi,...,Zk) may or may not be the same as the (21,
., 2k ), and the P; are determined by the specific application.
We now consider some special cases.

Case 1. Suppose we desire the predictive margin for the pop-
ulation from which the sample was taken or for a specific sub-
population of the sampled population. The population predic-
tive margin is given by

N N
PPM(r) = Y Gig(r, Z:,0) / 3 s,
=1 =1

where N is the population size, (Z1,...,Zy) are the pop-
ulation values of the covariate, and &; equals one if the ith
observation is in the subpopulation and zero otherwise. With
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Table 2
Logistic regression of probability of digital rectal exam on age, family income, sex, race, education, marital
status, self-reported health status, and type of health insurance using data from individuals between 40 and

64 years of age sampled in the 1992 NHIS (sample size = 3657,%

estimated population size = 57.0 million)

Model 1 (without interaction)

Model 2 (with interaction)

Standard Standard
Variable Beta error p-value Beta error p-value

Intercept -3.81 .39 — —4.18 42 —
Age (years) .033 .007 <.001 .033 .007 <.001
Family income (<20 K vs. 220 K)  —.24 12 .048 .35 .30 NA
Sex (men vs. women) —.53 .08 <.001 —.53 .08 <.001
Married vs. Not Married” .09 .09 .30 .08 .09 .35
Race .079 .063

White vs. Black 37 A7 .38 A7

Hispanic vs. Black .22 .20 24 .20
Education <.001 <.001

High school vs. <12 years .26 .15 .28 .15

>12 years vs. <12 years .61 .15 .63 15
Health status .085 .078

Fair/poor vs.

excellent/very good 22 .13 21 13
Good vs.
excellent/very good .19 .100 .20 .10

Health insurance <.001 NA

FFS (large) vs. None .98 18 1.33 27

FFS (other) vs. None .80 .20 1.18 27

HMO/PPO vs. None 1.15 .18 1.44 .27

Public vs. None 1.11 .23 1.95 A7
Health insurance x income® .016

FFS (large) and <20 K —.73 .35

FFS (other) and <20 K -.99 .37

HMO/PPO and <20 K —.23 41

Public and <20 K -1.19 .51

@ Sample excludes 120 individuals of other races, 334 individuals with missing information concerning digital rectal
exams, 85 individuals with missing covariates other than health insurance, and 69 individuals with military health

insurance or missing health insurance information.
b Married is married with spouse in the household.

¢ Reference category is no health insurance and income >20 K.

sample survey data {(z;,¥;), ¢ = 1,...,n}, each sampled in-
dividual has a sample weight (w;) that effectively represents
the number of people in the population that he represents.
The predictive margin is given by

n n
PM(T) = Z‘siwig(ra Z“é)/z 5iwiy
i=1 i=1

where § is a sample-weighted estimator of 6 using the full
sample. For example, for the analysis of covariance, PM(r) =
&r + 3%, where (&1, ...,4R, () are weighted least-squares es-
timators using the full sample and

n n
zZ= Z(Siwizi/z O wj.
i=1 =1

The predictive margins in Table 1 are examples of Case 1 with
a logistic regression model.

Case 2. Suppose we want to estimate the predictive margin
for an external population for which we know the distribution
of the covariates, which takes on S distinct values Z,...,Zs.
Letting 7; equal the probability that Z = Z; in the external
population, we have

PPM(r

Z mig(r, Z;, 6)

and

S
(r) = mg(r, Z,0),
=1

where @ is the sample-weighted estimator of 6 using the sam-
pled data. For example, for the analysis of covariance, PM(r)
= &r + BZ, where (&1, ...,4R, ,8) are wexghted least-squares
estimators using the sample and Z = Ez 1 ™iZ;. Historically,
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demographers and epidemiologists have used this type of stan-
dardization in which death rates of one population are stan-
dardized to the age distribution of another population using
5-year age categories (Neison, 1844). Another example is given
in Section 4 using a proportional hazards regression model
and standardizing smoking/sex distribution from an external
population.

Case 3. Suppose a simple random sample of observations is
collected and we estimate the predictive margin for the sample
distribution of the z's as

1 1 A
PPM(r) = - Zg(r, 2;,0) and PM(r) = - Zg(r, 2i, 0).
i=1 i=1
Note that PM(r) of Case 1 with 6; = 1 reduces to this
PM(r) under simple random sampling (because w; = 1) but
that PPM/(r) is different for the two cases. We believe that
PPM(r) of Case 1 is the more appropriate target parame-
ter. This difference in target parameters has implications for
the estimation of standard errors, as will be explained in Sec-
tion 3.

An implicit assumption in the interpretation of (2) as a pre-
dictive margin is that the values of the covariates would be
unaffected by assignment of individuals to different risk factor
or treatment groups. The importance of not including vari-
ables “on the causal pathway” in regression models when es-
timating causal effects is well known (see Korn and Graubard
(1995) for references), and since the predictive margin is pre-
dicting a mean if the group were changed, this caution carries
over to the present situation. Assuming the covariates 2 are
not causally affected by group, one can include interactions
between components of z and the group.

We end this section by noting that the “obvious” choice
of g for nonlinear models can sometimes be the wrong one.
For example, suppose we are interested in the predictive mar-
gin for the mean of y, where logy;; = a; + Bz + e;; and
the e;; are independently and identically distributed with
normal distributions with mean zero and variance o2. One
might incorrectly assume that g(r, z,8) = exp(ar+8z) would
be the right choice for g. However, note that E(y | r,z) =
exp(or + Bz + 62/2) since y has a lognormal distribution.
Therefore, the correct choice of g to predict the mean re-
sponse of y is g(r,z,0) = exp(ar + Bz + 02 /2), where § =
(a1,...,aR,8,0%).

3. Standard Error Estimation

In the nonsurvey setting with the analysis of covariance y;; =
a; + By + e, the variance of the predictive margin, which
equals the adjusted treatment mean in this setting, is well
known and given in textbooks (Neter, Wasserman, and Kut-
ner, 1990, pp. 888--890) as

= =\2
var(dr+Bi | {I’l]}) = 03 ;}; + ) S:T — x) » (4)
ZZ(%‘;‘ - ;)
i=1j=1

where ag is the variance of the e;;. This variance is actually a
conditional variance, conditional on the set of observed {z;;},
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which is appropriate when the target parameter is PPM (r)
of Case 3. To compare the conditional variance (4) with the
unconditional variance in the analysis of covariance setting,
consider a simple random sample of observations in the anal-
ysis of covariance setting. The unconditional variance is given

by
var(& + %)
= E[var(&r + 8% | {xi;})] + var[E(&r + 82 | {zi;})]
= Elvar(ér + B2 | {zi;})] + B*var(z),

where the second equality follows since E(&r | {z;;}) = ar
and E(3 | {zi;}) = B. The difference in the unconditional and

conditional variance estimators is approximately [32var(§:),
which is not of small order compared to var(ér + 3z | {z’s}).

However,
R\
> (1 + P ﬁ) , (5)

where R? is the (population) multiple correlation coefficient
and P, is the proportion of the population in group r. The
inequality in (5) is an approximate equality if the population
mean of the X’s in group r is equal to the overall population
mean. The ratio of the variances will tend to be close to one
unless R? is high. For example, with P, = 1/3 and R? = .3
(.6), the right-hand side of (5) equals .87 (.67).

The textbook formula for the variance of an adjusted treat-
ment mean is (4) with the least-squares estimate of o2 sub-
stituted for o2. As just described, even with a simple ran-
dom sample, this formula is only valid when the inference is
conditional on the sampled z;;’s (Case 3) and not when the
inference is for the population from which the sample was
taken (Case 1). In survey applications, when an inference for
a particular population is desired, the unconditional variance
is appropriate, implying that the textbook variance formula
should not be used even in the case of simple random sam-
pling.

The difference between variance estimators for the adjusted
treatment mean that are, and are not, conditional on the sam-
pled z;;’s is surprising because it is not seen for some other
common regression parameters. For example, in a simple lin-
ear regression, y;; = a+0z;; +e;;, the unconditional variance
of the slope and intercept can be expressed as

Elvar(ar + Bz | {zi; )]
var(& + (%)

var(,é) = E[var(B 1 {z's})] and var(&) = Elvar(a | {z's})],

showing that the unconditional variance estimators [e.g., an
estimator of var(3)] would be expected to be close to the
conditional variance estimators [e.g., an estimator of var(3 |
{z’s})}.

To estimate the variance of PM(r) for general g(-) and
complex sampling designs, one can use Taylor series lineariza-
tion. We sketch the approach for Case 1; details and a com-
puter program for linear and logistic regression are available
from the authors. Using

-1
n
1
PM(r)= |~ > biwi
=1
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1 o
X {;; ZtSiwiQ(h 23, 00)
i=1
+1 Z(;W(agr_w) ) 6 90}

a linearized varlance estimator is given by var[PM(r)] =
V' Sv, where V' = (1/w, —4/w?, A’ Jw) and

w=2 Z(siwu
n 1=1
1 n
= Z5iwi9(T, zi,6)
i=1
1 n
¥ - Z‘siwig(h z;, 0)
_Za (69(7’2“ ) >’
6

and S is the covariance matrix of (y,w,é), estimated using
the survey design, evaluated at 6y = 0.

A jackknife procedure is an alternative to linearization. Let
the first stage of sampling involve the stratified selection of mj,
primary sampling units (PSUs) from stratum h, h =1,..., L.
Consider a new dataset that excludes the observations in the
ith sampled PSU of the hth stratum and increases the sam-
ple weights of the retained observations in the hth stratum
by a factor of my, /(mp — 1). Let PM(r; —hi) be the rth cate-
gory of the predictive margin based on this new dataset. The
jackknife variance estimator is given by

A=

mp
mp

™0 = L NP M (r; —hi) — PM()).

m
i=1

L
@ (PM(r)] =)

h=1

In our experience, the linearization and jackknife variance es-
timators both behave reasonably well when L — ¥my > 20.

It should be noted that standard errors for adjusted treat-
ment means are not needed for, nor should they be used for,
testing group differences. These differences should be tested
using the model parameters. For example, in the analysis of
covariance, one would test o = as = -+ = ap using the ap-
propriate covariance matrix of the ¢; that takes into account
the survey design. This is not to say that the presentation of
standard errors for the predictive margin is useless; the situa-
tion is analogous to the analysis of variance where one would
present standard errors for group means even though they
would not be used for testing group differences.

4. Examples

Ezample 4.1. Digital Rectal Ezams and Type of Health
Insurance Coverage

This example was briefly discussed in Section 1. The proba-
bility an individual has had an annual digital rectal exam
is important, as the American Cancer Society recommends
annual digital rectal exams for individuals aged 40 or over
for cancer screening (American Cancer Society, 1993). For
public policy reasons, there is interest in the association of
this probability with the type of health insurance the indivi-

Biometrics, June 1999

dual has (Potosky et al., 1998). Table 2 presents two logistic
regression analyses of the probability on the type of health
insurance and age, family income, sex, race, education,
and self-reported health status. Model 1 contains only
the main effects, while model 2 additionally contains the
health insurance-by-income interaction. The data used for
the analyses are from the Cancer Control Supplement to
the 1992 National Health Interview Survey, a survey of the
civilian noninstitutionalized population of the U.S. (Benson
and Marano, 1994).

Based on model 1 in Table 2, one can see that the
probability of having a digital rectal exam is lowest for
those with no health insurance (since the base group is no
health insurance) and highest for the health maintenance
organization (HMO)/preferred provider organization (PPO)
insurance group. We find that these differences are much
easier to interpret by displaying the predictive margin in
column 4 of Table 1. With the interaction (model 2), we find
the improvement in interpretability offered by the predictive
margin even larger (column 5 of Table 1). Additionally, as a
statistical model builder, one might be interested in the effect
of the inclusion of the interaction on the primary question.
This is difficult to see from Table 2, but comparison of the
predictive margins in Table 1 for the models shows that the
major effect was to increase the predicted probability of the
exams if everyone was using public insurance. The standard .
errors of the predictive margins in Table 1 were calculated
using linearization.

The third predictive margin displayed in Table 1 addresses
the question of predicted probability of digital rectal exams
if the individuals with no insurance had instead one of
the other types of insurance. This predictive margin was
calculated by using as the population for the adjustment only
those individuals with no insurance (Case 1). The interesting
relative differences in the predictive margins for groups (e.g.,
the HMO/PPO and Public groups) are due to the fact that
individuals with no insurance tend to have lower income than
the population as a whole and that there is an income-by-
group interaction included in model 2.

Ezample 4.2. Lung Cancer Incidence and Size of Place of
Residence

There is interest in urban/rural differences in lung cancer
rates (see Kafadar and Tukey [1993] for references). Because
of changes in urban/rural smoking patterns over time
(S. Devesa, personal communication, 1998), estimating
urban/rural lung cancer rates adjusted for smoking is of
scientific importance. Table 3 presents a proportional hazards
regression analysis of the incidence of lung cancer on smoking
status (current smoker, former smoker, never smoked), sex,
and size of place of residence. For this semiparametric
modeling, age rather than time from the baseline survey is
used as the time scale (Korn, Graubard, and Midthune, 1997).
The model is

)‘(a t 13171527156)()[7‘1117‘2)
= Ao(a) exp{Bs11s1 + Bs2ls2 + BsexIsex
+ Br1lr1 + BraIr2},

where Ma | L1, . .., Ir2) is the hazard of an individual at age
a and the I's are dummy indicator variables corresponding
to the categorical variables in Table 3. The analysis is cause
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Table 3

Cause-specific proportional hazards regression of
lung cancer incidence on smoking status at baseline,
sezx, and place of residence using data from the
epidemiologic follow-up of NHANES I (sample size
= 12,939, estimated population size = 96.8 million)

Standard
Variable Beta error p-value

Smoking at baseline survey <.001

Current vs. Never 1.87 .20

Former vs. Never .76 21
Sex (men vs. women) .57 .16 <.001
Place of residence .051

Urban (<10°) vs. Urban (>10%) .05 16

Rural vs. Urban (>10°) 38 17

aGample excludes 1355 individuals with missing smoking
information and 13 individuals whose data of lung cancer diagnosis
was undetermined or before the date of the baseline survey.

specific, so deaths are treated as censored observations. The
data used for the analysis are from the 1992 follow-up of
the NHANES I Epidemiologic Followup Study (Ingram and
Makuc, 1994), which is a continuing followup of the NHAN ES
1 sample who were aged 25-74 years at the baseline survey.
Therefore, the analyses presented in Table 3 and to be
discussed below are conditional on the individuals not having
lung cancer at age 25.

We consider the predictive margin for the cumulative
incidence of lung cancer as a function of place of residence,
controlling for sex and smoking, and consider standardization
to two different populations (Table 4). One population is the
1971-1975 U.S. population aged 25-74 years as sampled by
NHANES 1. The other is 1992-1993 U.S. population aged
25-74 years as sampled by the Current Population Survey
(CPS). The CPS is a continuing monthly survey of the U.S.
For 1 month in 1992 and 2 months in 1993, the Tobacco
Use Supplement acquired information on smoking on a total
of 222,442 individuals, which is the basis of the estimated
proportions in Table 4 (Shopland et al., 1996).

Table 5 displays the observed incidence and predictive
margins for cumulative incidence for lung cancer at age 70.
Although the predictive margin yields a cumulative incidence
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for each age (> 25), we present only the age 70 incidence.
The standard errors of the predictive margin were computed
using a jackknife because no linearization variance formulas
have been derived for this type of analysis. For calculating the
standard errors when the standardizing distribution was from
the 1992-1993 CPS, the sampling variability of the smoking-
by-sex proportions in Table 4 was ignored since it is of small
order because of the large sample size of the CPS compared
to NHANES 1. In Table 5, we note that the incidences in the
predictive margin (NHANES I) are closer to each other than
are the observed incidences. This is because fewer individuals
smoked in rural areas than in the urban areas and fewer men
smoked in the Urban (> 10°) areas than in the Urban (< 106)
areas (data not shown). The incidences in the predictive
margin (1992-1993 CPS) are lower than in the predictive
margin (NHANES I) since there was less smoking in 1992~
1993 than in 1971-1975 (Table 4).

5. Discussion

The display of predictive margins can benefit a presentation
of estimated regression coefficients associated with treatment
or risk factor groups in several ways.

(1) The predictive margin may convey the scale of group
differences better than regression coefficients. For example,
the presentation of the probabilities of rectal exams in Table
1 may be easier to interpret than the log odds ratios in
Table 2.

(2) With more than two groups, the display of group
differences via regression coefficients of 0-1 dummy variables
requires designating one of the groups as the baseline
group, even though there may be no natural baseline
group. Comparison of nonbaseline groups is then slightly
inconvenient, requiring subtraction of regression coefficients.
A predictive margin treats all the groups symmetrically,
avoiding this problem. Predictive margins can also be used
with a continuous treatment or risk variable by fixing that
variable to be specific values.

(3) In some applications there is interest in the magnitude
of the effects of inclusion of certain covariates in the model
on group differences. By performing the analysis with and
without the covariate, one can determine the changes in the
predictive margin for each of the groups. For example, one
may find that the inclusion of a covariate has a large effect
on the predictive margin for group 1 but not for groups 2
and 3. One cannot easily see this by examining the regression
coefficients.

Table 4
Estimated population proportions of smokers by sex for the U.S. population ages 25-74 years
sampled at two different times with NHANES I and the Current Population Survey (CPS)

Smoking status (%)

Never smoked

Former smoker Current smoker

NHANES I Men 12.1
(1971-1975) Women 27.9
1992-1993 CPS Men 20.5
Women 29.3

13.8 21.6

7.1 17.5
14.1 13.4
10.6 12.1
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Table 5

Observed cumulative cause-specific incidence and predictive margin for cumulative cause-specific
incidence of lung cancer at age 70 as a function of place of residence; predictive margins
control for smoking status at baseline and sex (see Table 3), standardizing to populations

sampled by NHANES I (1971-1975) and the 1992-1993 Current Population Survey (CPS)

Observed Predictive Predictive
incidence® + SE margin + SE margin + SE
Place of residence =~ Sample size (%) (NHANESI) (%)  (1992-1993 CPS) (%)
Urban (>10°) 3402 3.6+ .6 40+ .5 31+ .4
Urban (<106) 4771 4.3 + .7 42+ 5 3.3+ 4
Rural 4766 54 £ .8 5.8 £ .8 45+ .6

& Observed incidence is based on a sample-weighted Fleming-Harrington estimator of the cause-specific

survival distribution.

(4) In some applications, there is interest in the magnitude
of the effects of different possible transformations of the de-
pendent variable on group differences. These effects are diffi-
cult to interpret by examining regression coefficients (because
they are on different scales with different transformations) but
are easy to interpret with predicted quantities like predictive
margins (Carroll and Ruppert, 1981).

(5) With group-by-covariate interactions in the model, the
predictive margin allows one to display the overall group effect
on the outcome. This effect is very difficult to see from the
regression coefficients. Because of this difficulty, we suspect
that many analysts inappropriately avoid including group-by-
covariate interactions in their models.

(6) Applications involving the effects of group changes on
outcome for specific populations are easily handled.

With appropriate consideration of the standardizing pop-
ulation of the covariate distribution, the presentation of pre-
dictive margins with their standard errors can be a useful
addition to most analyses of group effects on outcome.
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RESUME

Dans l'analyse de la covariance, les moyennes des traitements
ajustées permettent de comparer les moyennes par groupe
(traitement) aprés controle des distributions des diiférentes
covariables dans les groupes. Les marges “prédites” sont une
généralisation des moyennes des traitements ajustées aux mo-
deles non linéaires. La marge “prédite” pour le groupe r repré-
sente la réponse prédite moyenne si tout ’échantillon était
dans le groupe r. Ce papier discute l'utilisation des marges
prédites dans le cadre de données de survie complexes, ou
I'on s’intéresse principalement au choix de la distribution des
covariables utilisée pour standardiser la marge “prédite.” 11
est suggéré que la formule classique pour l'écart-type de la
moyenne des traitements ajustées a partir d’une analyse de
covariance peut étre inadaptée dans le cadre de données d’en-
quétes. Des applications ont été réalisé a partir de données
du National Health Interview Survey (NHIS) de 1992 et du

Epidemiologic Followup Study to the first National Health
and Nutrition Examination Survey (NHANES I).
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