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SUMMARY. We propose a conditional scores procedure for obtaining bias-corrected estimates of log odds

ratios from matched case-control data in which one or more covariates are subject to measurement error. The
| approach involves conditioning on sufficient statistics for the unobservable true covariates that are treated
| . as fixed unknown parameters. For the case of Gaussian nondifferential measurement error, we derive a set of
' unbiased score equations that can then be solved to estimate the log odds ratio parameters of interest. The
procedure successfully removes the bias in naive estimates, and standard error estimages are obtained by
resampling methods. We present an example of the procedure applied to data from a matched case-control
study of prostate cancer and serum hormone levels, and we compare its performance to that of regression

calibration procedures.
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1. Introduction

There has been a proliferation of biorepositories holding serum
or tissue specimens collected from subjects in large clinical tri-
als or prospectively followed cohorts. Collected prediagnosis,
these specimens can be used to examine relationships between
risk of disease and serum and tissue biomarkers measured by
laboratqry assays. The nested case—control design, which in-
volves matching on characteristics that might otherwise con-
found exposure-disease relationships, is frequently used for
such studies. Typically, one has only a single measurement
of the biomarker per individual and it may be subject to
measurement error arising from multiple sources. We envi-
sion that each subject has a true underlying average measure
for the biomarker of interest. The actual level on any occa-
sion may vary from this average for numerous reasons. For
example, for biomarkers measured in serum, biological vari-
ation related to inherent patterns of secretion (e.g., diurnal
rhythms) or changes in personal characteristics (e.g., diet)
that are unmeasured or unknown to affect the biomarker of
interest cause fluctuations in levels. Differences in specimen
collection or handling may also cause fluctuations. We refer
to the combined effects of random biological variation and

specimen handling on biomarker levels as occasion-within-
person variability. There is also laboratory assay variability,
which may be subdivided into between-batch (i.e., assay) and
within-batch variability. We consider the contributions of all
of these sources of variability as measurement error with re-
gard to an individual’s true biomarker level.

Measurement error in an explanatory exposure variable
may result in attenuation of relative risk estimates and re-
duced power for detecting exposure—disease relationships. For
unmatched studies, a variety of measurement error correction
methods have been proposed for logisti¢ risk models (Ros-
ner, Willett, and Spiegelman, 1989; Rosner, Spiegelman, and

Willett, 1990, 1992; Carroll, Ruppert, and Stefanski, 1995,

and references therein), but the matched design has received
far less attention. Armstrong, Whittemore, and Howe (1989)
propose & measurement error correction method assuming a
normal discriminant analysis model. Their method assumes
multivariate Gaussian covariates, but in that setting, it has
the flexibility to handle differential measurement error. Forbes
and Santner (1995) develop a correction method using a ret-
rospective likelihood with a binary exposure variable. Their
method assumes that the binary exposure variable is mea-
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sured without error and addresses situations in which continu-
ous confounders may be measured with error. Prentice (1982)
proposes a method for parameter estimation in Cox’s fail-
ure time regression model when the covariates are measured
with error. Noting the similarity between Cox’s partial like-
lihood and the conditional logistic regression likelihood used
for matched analyses, Prentice’s method is applicable here.
But its implementation requires knowledge of the conditional
distribution of the true covariates given their observed error-
prone measurements or, at a minimum, sufficient information
to compute the conditional expectation of the exponential
terms in the likelihood.

The conditional scores method we propose for matched
studies is based on the prospective likelihood, and it allows
for very general covariate distributions. In this approach, un-
observable true covariates are treated as fixed unknown pa-
rameters. One conditions on a sufficient statistic to remove
them from the likelihood and produce a set of unbiased score
equations to solve for log odds ratio parameter estimates.

In Section 2, we review the matched case—control study de-
sign and likelihood. A measurement error model appropriate
for continuous biomarker variables measured by laboratory
assay is presented in Section 3. In Section 4, the conditional
scores measurement error adjustment procedure is developed
under an assumption of Gaussian nondifferential measure-
ment error. Regression calibration approaches are described
in Section 5. In Section 6, we apply the procedures to example
data from a study examining the relationship between serum
hormone levels and risk of prostate cancer. Simulation studies
are presented in Section 7. A discussion follows in Section 8.

2. Study Design

The study design considered here is a 1:M matched case—
control study with K strata (matched sets), although the re-
sults can be extended to more general matching. The disease
outcome is a binary variable with logit of disease probability
modeled by gi(r) = ay + B'r, where a;, denotes the contribu-
tion of all terms constant within stratum k, = is a vector of p
covariates, and 8 = (81, 82,...,8p)’ is a coefficient vector.

The usual method of analysis is conditional logistic regres-
sion. Associated with each subject there is a p-dimensional co-
variate vector, denoted by 7 for the case in stratum k and by
Tk2,Tk3, - -, Tk, M1 for the M controls. When all covariates
are measured without error, the conditional prospective logis-
tic likelihood for 1:M matching (cf., Hosmer and Lemeshow,
1989) is

-1
K M+1

I(B8) = H 1+ Z e(Thi—Tk1)'B . ) .
j=2

k=1

For 1:1 matching, this reduces to the likelihood function for
unconditional logistic regression with no intercept term, with
individual covariate vectors replaced by control minus case
differences and with all responses set as zero. When there
is measurement error in covariates, tests and estimates of 8
derived from usual maximum likelihood techniques applied to
(1) are biased (Armstrong et al., 1989). Corrections for that
bias in the general setting of 1:M matching are the sub ject of
this article.

3. Measurement Error Model

Suppose that the first p; components of each covariate vector,
Tkj, are measured with error. We denote the true (unobserv-
able, error-free) components by Ty = (z,(clj) ,a:g), e ,xip“))'
and the error-prone, observable version of Zk; by wy;. 77I‘he

remaining p» = p — p; components of Tkj, denoted by 2y =

(zg),z,g.),...,z,(:]’?))' , are observed without error. Let u,(:])

represent additive measurement error on the variable :1:,(3 such
that w,?]) = :1:5;) +u§;j), 1=1,2,...,p1; ] = 1,2?...,M+ 1;
k=1,2,...,K. We require that, for each 3, {u,(:J), over all k
and j} have constant mean and variance and be independent
of {zfc;)} and also of {z,(cl])} and logits {gg(r)}; therefore, the

{u,(;])} satisfy the conditions of nondifferential measurement
error.
We model the measurement error as

ul) =¥ +0 + B 4 @)

forj=1,2,..., M+1; k= 1,2,...,K;i= 1,_2,...,p1,whe_:re
¢ is a constant depending only on i, {O,(;J)} are random

occasion-within-person effects, {B,(ci)} are random laboratory

batch effects, and {e,(:)} are random within-batch error ef-
fects. To eliminate assay batch effects, it is standard practice
to run all samples from the case and controls from a matched
set together in a batch. The notation and description here
require this batching design. The batch effect corresponding
to the batch containing the kth stratum samples for mea-
suring covariate ¢ will be denoted by B,(:). (The number of
distinct batch effects is typically fewer than the number of
matched sets.) All random effects are assumed to have mean
zero. The occasion effects, batch effects, and within-batch er-

rors are independent of each other. The {eg])} are indepen-
dent, with variance depending only on 7, denoted by cr%(z').
The effects O,(Clj) and O,(:j) may be correlated, with covari-

ance op(i,i') = cov(O,(c;.),O,(:j/)). For example, blood levels
of two or more hormones may be correlated because the hor-.
mones share metabolic pathways or are controlled by complex,
tightly regulated processes such as feedback loops in which
a fluctuation in the level of one hormone signals changes in
the levels of other hormones. We assume that different assays
are used to measure the different types of markers (covari-
ates) so batch effects are independent between markers. We
denote the variance of the (distinct) batch effects for covari-
ate i by 0% (i). The quantities 0o (3, i'), 0% (i), and 0% (3) can
be estimated from either an internal or appropriate external
variability study.

Since likelihood (1) is a function of the control-case covari-

ate differences, we have particular interest in the structure of

the measurement error on these covariate difference vectors.
For each stratum, we define py M x 1 and poM x 1 vectors

! / ’ I / Y
diz = (Tho = Th1, Ths — Thiy ... Thoprp1 — Tiy)
and

/ / / ’ / Y
dy, = (zk2 = 211 k3 T Rkl B, M4l T zkl) .
The error-prone version of dyg is di,,, and it is defined analo-
gously. dy,, satisfies di,, = dj,+dy, and has variance 3d, d.
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with elements
cov (ugc’]),ukj ) cov (uf:]),ukl)) — cov (""Sl)*”kg))
+ cov (u;cl ’“5:1 )
where

cov (ufclj),ukj )

(var (B{)
(

O,(:J)) + var (B,(ci))

if j#5 andi=4

var
= +var (eij)) if j=; andi=4
cov (0,(;]’, ol ’) if j=7 andi#i
‘0 otherwise

- from model (2). Then X4, g, is a block matrix of the form

4,.2,M+1
Bd,,3,M+1

24,22 Bd,23
Yd,32 Bd.3.3

Bd, M+1,2 Zd, M+1,M+1

in which each element, £4,_ ; ;/, is a p1 X p1 matrix equal to
2V if j = j' and equal to V if j # j’, with the elements of
the py x p1 matrix V given by

Vi = oo (i, ’L)+0’E(1,) ifi=i;i=12,...,m
“ oo(i,i) ifi#d; i, =1,2,...,p.

Observe that £g_ g, does not depend on the batch-to-batch
variances {'U%(i)} due to assaying samples from the same
matched set together in a batch. Not matching on batch will
result in loss of the simple structure of X4, g, , and measure-
ment error on the differences may become correlated across
matched sets, making derivation of the conditional scores es-
timator extremely difficult. (See Appendix A for additional
details.)

4. Conditional Scores Measurement Error
Adjustment Method _ .

The bias-corrected estimator ‘we derive is an example of a
sufficiency estimator as described by Stefanski and Carroll
(1987). Unobservable x variables are treated as unknown pa-
rameters. Conditioning on a sufficient statistic removes them
from the likelihood, and unbiased score functions are obtained.
As stated previously, measurement error is assumed nondiffer-
ential with constant mean and variance. In addition, for this
derivation, we assume that the measurement error is Gaus-
sian.

Let Yy = (Yk1,Yk2,..., Yk m+1) denote the vector of bi-

nary response variables associated with the M 4+ 1 subjects

in the kth matched set. Let 8 = (8%, 8,)’ represent the par-
titioning of B associated with = and z. A naive method of
estimating 8 would be to apply maximum likelihood meth-
ods to '

-1

K M+1
I(B)= H 14 Z (®rj—ak1) Be+(2ki—2K1) B2 3)
k=1 j=2

after replacing all &'s by w'’s, but this does not lead to con-
sistent estimates. More generally, we write (3) as

Pr [YI,Y27~ . .,YK l {mk:azlm(Tk = 1)}kK=1]

M+1
o P D Ve (@hiBe + 24;B:)
i=1
= H M+1 o @
k=t Z exp (‘B;cjﬂz + z;cjﬁz)
j=1

where 2 = (T)q,Thos- - :1:;c M+1)Iv 2k = (21, Zkos- -
z,’c M+1)” and T} = )]M+1 Yy;. In Appendix A, we show
that Ay = dgqy + Edu,du Bkz is sufficient for di,, where Bz
is treated as though it were known and By, = (Y285, Y3 B,

Y, M+1B%)". Then the full conditional likelihood re-
duces to

Pr [Y1,Y2, O Yg | (B dig, i, T = 1)?:1]
-1
K M+1
= H 1+ Z exp (‘n’c]ﬁx + d;c]zﬂz) y (5)
k=1 j=2

where vk; = dijw — (1/2)24, 2,282, dijw
and dj;, are defined analogously. The B; and 3. that max-
imize (5) are the solutions to unbiased score equations when
the {Ay} are held fixed. Under regularity conditions, there
exists a consistent solution to these unbiased estimating equa-
tions. In Appendix B, we present numerical solution methods
that can be performed utilizing standard conditional logistic
regression software.

To obtain standard error estimates, one can use any num-
ber of methods, including the jackknife. Let ﬁ(k) denote the
measurement error corrected estimate of 8 computed from

= Wk — Wk,

" the full data set minus the kth matched set. The jackknife

covariance estimate is

B1y) B - B1) /K,
(6)

where ﬁ(,) = )],‘:;1 ﬁ(k) /K ,and ﬁ is the measurement error
corrected estimate using the full data. If measurement error
variances are estimated, we show in Section 6 how to obtain
variance estimates that incorporate variability due to both
the uncertainty in the measurement error variance estimates
and the sampling of matched sets.

K
Covjack(ﬁ) (K -1) Z ﬁ(k

=1

5. Regression Calibration Measurement Error
Adjustment Method

Regression calibration is a general method of measurement
error correction useful in a variety of settings, so it is of in-
terest to compare its performance with the conditional scores
method. Regression calibration and its broad applicability are
described in Carroll et al. (1995). Rosner et al. (1989, 1990,
1992) described an adjustment method for (unconditional)
logistic regression that is equivalent to regression calibration
for that special case. Basically, one replaces error-prone co-
variates by the conditional expectations of true covariates
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given error-prone measurements and other covariates mea-
sured without error and then proceeds with standard estima-
tion techniques.

How regression calibration is implemented in the matched
study setting is not entirely obvious. The natural covariate
vectors in this setting are the control minus case covariate
difference vectors. In our first attempt to use regression cali-
bration for this problem, we applied regression calibration to
these difference vectors. We will refer to this version as re-
gression calibration method 1. Also, we considered a second
version, which proceeds exactly as in the unmatched setting,
ignoring correlation among members of a matched pair. We
shall refer to this as regression calibration method 2.

For regression calibration method 1, we derive an estimate
of E[dy; | diz, dy). Conditional on the error-free covariates
{z,(:])}, we model di; and dyy, as dj, = Ag+dj, A1 +d}, and

fw = Ghg + iy, = Ao+ dj, Ay +df +di,, k=1,2,.. K,
where Ag and A; are unknown coefficient matrices and dj,
and dy, are zero-mean multivariate error variables. Define
dipn = dige + dyy, 24,.d, = cov(diy,dyy), and Ta,.d, =

+ cov(dge, die). Assume a multivariate regression model (John-

son and Wichern, 1988) Dy = D,A + D, where Dy, is a
K x p1 M matrix with kth row equal to d;cw, Dyisa Kxp M
matrix with kth row equal to d;cn’ Aisa (poM+1)xp; M ma-
trix with the first row equal to Ag and the remaining portion
equal to Ay, and D; is a K x (p2M +1) matrix consisting of a
K xpa M matrix with the kth row equal to d;c »» augmented by
a leading column of ones. This yields ordinary least squares
estimates f} = (D.D:)"'D,Dy, Dy = Dy, — DA, and
Xd, d, = DpDp/[K - (p2M +1)].

A consistent estimator of 34, 4. is 2d,,d¢ = 2d'mdn -
ﬁ:du,duy where f‘-‘du,du is a consistent estimate of X, d,-
The best linear approximation (exact under multivariate nor-
malitY) to E[dkz I diz, dkw] is

Eldkz | 2] + cov(dis, diw | diz)lcov(diw, drw | diz)] ™
X [dkw - E[dkw I dkz”
= (1- 24,4234, ) (Ao + dhA1)

-1
+ 24,427 4 diw.

~ Therefore, we estimate E[dy, | di., dx.] by

. (I - ﬁdgydz Egnlydn) (AO + d;czAl) + 2dﬂd'~' Eg:vdndkw’
k=12,... K,

and substitute into the likelihood (3) to perform the usual
analysis to estimate 3.

Regression calibration method 2 is implemented as in the
unmatched setting. The wy;, Zkj, and Xy 4 replace dy,,
di., and X4 4 in the above formulas; ie., {(wkj,2x;)} are
treated as K(M+1) independent p-dimensional covariate vec-
tors, ignoring all matching. The matrix By is p1 X p1 with
tth diagonal element equal to oo (3,4) + 0% (i) + o%(i) and
(1,4') element equal to oo (i, ). '

6. Example

Several recent studies (Barrett-Connor et al., 1990; Hsing and
Comstock, 1993; Gann et al., 1996; Nomura et al., 1996) have
examined the association of hormones with prostate cancer

risk. Findings differed, perhaps partly due to noise inherent
in hormone measures, including laboratory variability, varia-
tions in specimen collection precedures, and random biologi-
cal fluctuations over time (Hsing, 1996).

As part of the Alpha-Tocopherol Beta-Carotene (ATBC)
Lung Cancer Prevention Study (ATBC Cancer Prevention
Study Group, 1994), a serum repository was created, and
several prospective matched case-control studies have been
conducted. Qur example examines the relationship between
serum sex hormones and prostate cancer. As the 29,133 male
smokers were accrued, serum samples were collected and
frozen at —70°C and sociodemographic and anthropometric
variables were recorded. After 5-8 years of follow-up, 246 men
had developed prostate ‘cancer and 116 were randomly se-
lected for inclusion in the hormone study. For each case, we
identified two controls who were free of prostate cancer at
the time of the case’s diagnosis and matched on the basis of
clinic, treatment group, age at time of case’s diagnosis (+1
year, relaxed to +2 years in a few cases), and date of blood
draw (£28 days, relaxed to +45 days for a few cases). The
111 case—control sets with no missing data on the variables of
interest were included in this analysis. Serum samples from
those 333 men were thawed and assayed for a battery of nine
hormones and binding proteins.

We present results from fitting a model that includes testos-
terone and dihydrotestosterone (DHT, a metabolite of testos-
terone) and the variables educational status (categorized as
common school only, some high school, or high school grad-
uate) and height (in centimeters) as examples of sociodemo-
graphic and anthropometric variables. For the kth matched
set, the assumed risk model is

logit{Pr(Y = 1| k,T, D, H, Z1, Z2)}
=ak +BrT +PBpD +BuH + 121 + P22,

where Y = binary indicator of prostate cancer, ay, = contribu-
tion of matching variables in kth stratum, T = log(testoste-
rone), D = log(dihydrotestosterone), H = height in centime-
ters, and Z; and Z; = binary indicators of educational levels
2 and 3, respectively.

A separate study was conducted to assess the magnitude
of laboratory and occasion-within-person variability in serum
testosterone and DHT measurements. Men participating in
this study were in the same age range (5069 years), but not
all were smokers as in the ATBC cohort. Twenty-three men
completed at least four of the six scheduled blood draws, two
vials per draw. The resulting 262 vials were randomly dis-
tributed among 12 assay batches for DHT and 15 batches
for testosterone. Measurement error variance estimates (SE)

were var(e(’)) = .0038 (.00049), var(B) = .0039 (.0016),
var(O,(C;) ) = .026 (.0046) for testosterone, var(eg.)) = .0077

(:00098), var(B{)) = .0037 (.0021), var(0{) = .032 (.0061)
for DHT, and cov(0f},0()) = .024 (.0047).

Table 1 presents the results of fitting the logistic risk model
using no correction for measurement error (naive analysis),
using a conditional scores adjustment, and using two versions
of regression calibration. The adjustments (assuming known
measurement error) resulted in substantial corrections to co-
efficients of the error-prone covariates but little for the error-

free covariates. All results in Table 1 were calculated using
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Table 1
Uncorrected and measurement error corrected analyses for hormones
and prostate cancer ezample under the risk model logit[Pr(Y =1 |
AT,D,H,Z1,Z)) = A+ BrT + BpD + BuH + 171 + 222

Estimated Standard
error® z-score® p-value

Variable coefficient

Approximate

a. Uncorrected (Naive) Analysis

log testosterone (T') 4399
log DHT (D) —.6019
Height in cm (H) —.0245
Educational status
Zy .1465
Za 4904

.5940 74 .46
6591 —1.08 .28
.0182 -1.35 18
.3235 .45 .65
.4165 1.18 24

b. Conditional Scores Corrected Analysis Assuming
Measurement Error Variances Are Known

log testosterone (T') .8836 1.1986 .74 46
log DHT (D) —1.1404 1.2045 -.95 34
Height in cm (H) -.0250 .0173 —1.45 15
Educational status
VA .1358 .3606 .38 .71
Zs .5046 4422 1.14 .25

c. Regression Calibration Method 1 Assuming
Measurement Error Variances Are Known

log testosterone (T) 1.4085

log DHT (D) © =1.7792

; Height in cm (H) -.0253
Educational status

VA 1141

Za 5124

1.8012 .78 .43
1.8850 —.94 .35
.0176 —-1.44 15
.3658 31 .76
4545 1.13 .26

d. Regression Calibration Method 2 Assuming
Measurement Error Variances Are Known

log testosterone (T') - 7294 .9905 .74 .46
log DHT (D) —.9601 .9588 —1.00 .32
Height in cm (H) —.0243 0170 ~1.42 15
Educational status
Zy .1384 .3603 .38 .70
Zs 4987 4374 1.14 .25

a Standard errors computed for the uncorrected analysis (part a) are the maximum likelihood-based
estimates. For the analyses in parts b—d, standard errors are jackknife estimates based on (6) setting
measurement error variances equal to estimated values.

b, — estimate/(SE):

a Fortran program we developed ‘and took 5 seconds on a
SGI Power Challenge supercomputer. Also available from the
authors is an SAS macro that calls PROC PHREG (SAS In-
stitute, 1996) iteratively to estimate the conditional scores pa-
rameter estimates and their standard errors when error vari-
ances are known. Using the SAS macro, calculations in Table
1, part b, took 23 minutes on a Sun Workstation.

To account for the variability in the measurement error
variance component estimates, we also performed a paramet-
ric bootstrap procedure in which we simulated 500 sets of
measurement error variance estimates using the estimated
asymptotic multivariate Gaussian sampling distribution of the
estimates obtained from our variability study. For each of N
simulated sets of measurement error variance estimates, we
apply the correction procedures and compute the jackknife
variance estimate. Then the final standard error estimate of

the jth element of the beta vector is the square root of

N N
S (0 -A7) 3w (5)
— P i=1 i=
Valpootjack (,3]) = (N — 1) + N

(7
where B(.z) is the corrected estimate of the jth element of 8
computed using the full collection of matched sets and as-
suming measurement error variance components equal to the
ith simulated set, ﬂ}“ is the mean of those N values, and
v?rjack(ﬁ§z)) is the jth diagonal element of (6) computed as-
suming measurement error variances equal to the ith simu-
lated set. This follows from var(8) = var[E(8 | £4,,a,)] +

E[va.r(é | ﬁdu,du)]- Due to the very precise estimation of

our measurement error variances, adding the parametric boot-

\
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strap resulted in minimal changes in standard errors and test
statistics (not presented).

¢ 7. Simulation Studies
© 7.1 Simulation Design

Case—control data sets of K = 111 and 300 matched sets were

. simulated under a risk model estimated from the prostate

cancer example and under some variations, with- 1000 repeti-
tions per study. Measurement error variances were assumed
known.

Covariate vectors (ak,T, D, H,Z;,Z2) and responses, Y,
were generated for a large cohort of subjects by randomly
generating multivariate normal vectors and applying appro-

. priate transformations or cutpoints. (Further details available

from the authors.) The binary outcome variable Y was gener-
ated under the model

logit[Pr(Y = 1| A, T, D, H, Z1, Z))
=A+BrT+BpD +BuH + B12Z1 + B2 20.

~Tables 2 and 3 simulations use parameters estimated in Table

1, part b. Those values for By, 8p, and By translate to
relative risks of 1.4, 0.61, and 0.80, respectively, comparing

| the third quartile of the covariate distribution with the
. first. The 31 and B3 translate to relative risks of 1.2
- and 1.6, respectively, comparing with lowest educational
. level. Using A, controls were matched 2:1 to cases to form
i K sets. Error-prone covariates T. and D. were generated
| using measurement error model (2) with estimates from our
" variability study.

Naive estimates were obtained by conditional logistic
regression analysis using T and D.. Conditional scores
estimates were obtained as described in Section 4. Regression
calibration method 1 and 2 estimates were obtained as
described in Section 5. Naive standard error estimates were
the usual ones based on the information matrix supplied
by conditional logistic regression routines (e.g., SAS PROC
PHREG; SAS Institute, 1996). Jackknife standard error
estimates were used in the other cases.

7.2 Simulation Results Under the Risk Model Estimated from
the Prostate Cancer Ezample

All methods converged on all repetitions of the simulations
in Table 2 (K = 111) and Table 3 (K = 300). As

" expected, the naive analysis produced severely attenuated
. estimates for Oy and Bp. Regression calibration method 1
. also produced severely biased estimates; hence, we consider

it no further. Conditional scores showed a little more small-
sample bias than regression calibration method 2, but bias
in both cases was fairly small for 300 or more matched

i sets. Compared with no correction, both correction methods
¢ produced estimates with larger root mean-squared errors

and median absolute errors in small samples; but when the
number of matched sets increased to 300 or 500 (results
not shown), the bias dominated, and this reversed. Using

- conditional scores or regression calibration method 2, interval

coverages were close to nominal levels. Naive estimation
resulted in severe undercoverage. Standard error estimates
were essentially unbiased.

A simulation for a null (8r = 0) case (results not shown)

- demonstrated that all methods have an approximately correct

level, as predicted by results of Tosteson and Tsiatis (1988)
and Carroll et al. (1995, Section 11.4).

7.3 Simulation Results Under Varied Risk and Measurement
Error Structures

Bias and convergence problems were noted in exploratory
studies examining the effects of factors such as degree
of correlation among covariates, departures from Gaussian
errors, large relative risks, large measurement error, and
skewness of covariate distributions. In each situation, we
simulated 1000 data sets of 111 matched sets.

Increasing the correlation between H and T and between
H and D from —.1 to +.7 increased the degree of the
measurement error correction on Sy to about 25%. The bias
increased only slightly, and the standard deviation nearly
doubled. Thus, the minimal adjustment on the error free
covariate coefficients in our original example was likely due to
the small correlations between variables measured with and
without error. _

To examine the effects of non-Gaussian measurement error,
we generated errors as Gaussian with point masses at +3
standard deviations, occurring with probability .05 at each
tail. Bias was almost 30% for Sr and a little more than 20%
for Bp for both conditional scores and regression calibration
method 2. .

To simulate large relative risks, we multiplied both 87 and
Bp by three. Conditional scores estimates were only slightly
more biased (compare to Table 2, part b), but convergence
failed in 7 of 1000 simulation repetitions.

To examine the effect of large measurement error,
measurement error was increased threefold. The conditional
scores procedure converged in only 784 of 1000 repetitions,
whereas regression calibration always converged. Bias was
small in both cases.

A key comparison between conditional scores and re-
gression calibration involves covariates from non-Gaussian
distributions. Calibration function linearity is satisfied for
multivariate Gaussian covariates, so one might expect
regression calibration to perform best in this case and worse
under departures such as highly skewed distributions. In
contrast, conditional scores are independent of the true
covariate distributions. We simulated covariates T and D as
log normal rather than normal, with means as before but -
with variances now set equal to means. Measurement error
variances were set to 40% of the true covariate variances
to maintain the original relative proportion of measurement
error.

Results for the highly skewed covariate situation are
presented in Table 4. Conditional scores estimates were less
biased than the regression calibration estimates, although the
former were more variable and their root mean-squared errors

‘and median absolute errors were larger. But the conditional

scores procedure converged on only 781/1000 data sets.
Convergence was more problematic (475/1000) for calculation
of the jackknife standard error, as it required convergence on
all jackknife samples.

Simulating data sets of 300 matched sets (results not
shown), the conditional scores procedure converged in
954/1000 repetitions and the jackknife standard error could
be computed in 888/1000 repetitions. The biases of the
conditional scores estimates of fr and Sp were reduced to
less than 6%. Biases in the regression calibration method 2
estimates remained high at 15% and 20%, respectively, and
resulted in gross undercoverage of confidence intervals.
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Table 2

Simulation results based on 1000 repetitions when simulating and fitting the risk model logit[Pr(Y
=1|AT,D,H,Z1,23)) = A+ BrT + BpD + By H + p121 + P2Z3 with K = 111 matched sets

Coefficient: Br Bp B B B2
True value: .88 -1.14 —.025 .14 .50
a. Naive Analysis
Average estimate .53 -.73 —.026 13 .51
Percent bias —40.0 36.0 —-2.9 ~4.2 2.9
Average SE estimate® .61 .53 .018 .33 40
Monte Carlo SE .61 .63 .018 .33 41
(Mean-squared error) /2 71 .67 .018 .33 A1
Median absolute error 49 .49 .012 .22 .26
Coverage probability (in %) of nominal®
90% interval 82.7 80.0 90.5 88.8 89.6
95% interval 91.1 87.4 95.7 93.9 94.7
b. Conditional Scores Analysis
Average estimate .96 —1.24 —.027 13 .51
Percent bias 8.9 —8.4 -7.1 -84 1.7
Average SE estimate® 1.14 1.00 .020 .35 .44
Monte Carlo SE 1.09 .95 .019 34 42
(Mean-squared error)!/2 1.09 .95 .019 .34 .42
Median absolute error .70 .59 .013 22 28
Coverage probability (in %) of nominal®
90% interval 92.9 93.1 92.1 90.8 91.9
95% interval 97.3 96.8 96.3 95.2 96.1
c. Regression Calibration Method 1
Average estimate 1.49 -1.85 —.028 12 .50
Percent bias 69.8 —62.7 —-11.6 ~13.1 4
Average SE estimate® 1.78 1.55 .021 .37 .47
Monte Carlo SE 1.67 1.46 .020 .35 .44
(Mean-squared error)!/? 1.78 1.63 020 .35 44
Median absolute error 1.11 1.00 .013 22 .29
Coverage probability (in %) of nominal®
90% interval 92.2 92.1 92.5 914 92.2
95% interval 96.9 96.9 96.5 - 95.5 96.2
d. Regression Calibration Method 2
Average estimate .93 -1.19 —.028 13 51
Percent bias 5.2 ~4.2 —4.5 -6.5 1.5
Average SE estimate® 1.06 .92 .019 .34 .43
Monte Carlo SE 1.02 .89 .018 .33 .42
(Mean-squared error)'/2 1.02 89 018 33 42
Median absolute error ~ .67 .58 .012 .22 .27
Coverage probability(in %) of nominal®
90% interval 91.9 91.2 91.7 90.2 91.8
95% interval 96.4 96.0 96.1 95.3 95.8

& Square-root of mean maximum likelihood-based variance estimate.
b Interval computed as estimate & z, /2SE, where z, /2 is the appropriate standard normal percentage point.
¢ Square-root of mean jackknife variance estimate computed using (6).

8. Discussion

Both the conditional scores and regression calibration method
2 measurement error adjustments performed well for bias cor-
rection in our simulated examples involving true covariates
generated from Gaussian distributions, moderate relative
risks, and moderate Gaussian measurement error. Only slight-
ly more bias and variability were observed in the conditional

scores estimates compared with the regression calibration me-
thod 2 estimates in these well-behaved settings. One would ex-
pect regression calibration to have some advantage when true
covariates are Gaussian because the form of the assumed cali-

bration function is exactly correct when all true covariates are

Gaussian. Indeed, the conditional scores procedureproduced
much less biased estimates when true covariate distributions
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Table 3
Simulation results based on 1000 repetitions when simulating and fitting the risk model logit[Pr(Y
=1|AT,D,H,2,,23)] = A+ BrT + BpD + By H + B1.21 + 222 with K =300 matched sets
Coefficient: Br Bp B £ B2
True value: .88 -1.14 -.025 14 .50
a. Naive Analysis
Average estimate .52 -.70 —.025 14 .51
Percent bias - -40.8 38.6 14 1.8 1.0
Average SE estimate?® .36 32 .011 19 24
Monte Carlo SE 37 31 .011 .20 .23
(Mean-squared error) /2 51 54 011 20 23
Median absolute error .38 44 0077 .13 15
Coverage probability (in %) of nominal® o .
90% interval 74.0 59.1 89.9° © 88.6 91.6
95% interval 83.0 71.4 94.3 93.9 95.6
b. Conditional Scores Analysis
Average estimate .92 -1.16 —-.025 14 .50
Percent bias = 4.0 ~1.5 -1.5 -1.3 -.5
Average SE estimate® .63 .55 011 .20 .25
Monte Carlo SE .62 .53 .011 .20 .24
(Mean-squared error)!/2 .62 53 011 20 24
Median absolute error 41 .35 .0079 13 .15
Coverage probability (in %) of nominal®
90% interval 89.9 92.2 90.0 89.5 91.7
95% interval 95.0 96.0 95.0 94.2 96.1
c. Regression Calibration Method 1
Average estimate : 1.52 —-1.84 —.026 .13 .49
Percent bias . 73.0 -61.3 -5.4 ~5.2 —-24 ;
Average SE estimate® 1.03 .90 .012 .21 .26 : i
Monte Carlo SE 1.00 .86 . .012 21 24
(Mean-squared error)!/2 1.19 1.11 .012 21 .24
Median absolute error .78 .78 .0082 13 .15
Coverage probability (in %) of nominal®
90% interval 85.5 83.2 90.1 89.8 91.2
95% interval 92.5 914 94.9 94.4 96.3
d. Regression Calibration Method 2 ]
Average estimate .91 ~1.14 -.025 14 .50 ;
Percent bias 2.9 2 1 -.5 -4 i
Average SE estimate® .61 .53 .011 .20 .24
Monte Carlo SE .60 .51 011 .20 .23 !
(Mean-squared error)/2 60 51 011 20 23 |
Median absolute error .40 .34 .0078 13 .15
Coverage probability (in %) of nominal®
90% interval 90.0 91.5 90.0 89.2 91.8
95% interval 94.6 95.8 94.9 94.1 96.1

8 Square-root of mean maximum likelihood-based variance estimate.
b Interval computed as estimate % 2, /2SE, where z,, /2 is the appropriate standard normal percentage point.
¢ Square-root of mean jackknife variance estimate computed using (8).

were non-Gaussian and highly skewed. Also, the greater vari-
ability in the conditional scores estimates likely reflects some
loss of efficiency resulting from requiring no assumptions
about the true covariate distributions.

Regression calibration method 1, based on case—control dif-
ferences, performed very poorly even in the Gaussian covari-
ate setting and should not be considered a viable option.

Based on the dependence of the likelihood on control-case co-
variate differences, this at first seemed the most natural way
to apply regression calibration in this matched setting. Per-
haps its failure was due to its implicitly requiring information
about case/control status in order to form the case—control
differences of the covariates. The calibration step of regres-
sion calibration should not require this knowledge of outcome.
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Table 4
Simulation results based on 1000 repetitions when simulating and fitting the risk model
logit[Pr(Y = 1| A,T,D,H,Z1,22)) = A+ BrT + BpD + By H + p12:1 + B2Z2

with K = 111 matched sets and highly skewed covariate distributions®

Coefficient: Br Bp Bu B B2
True value: .88 —-1.14 -.025 .14 .50
a. Conditional Scores Analysis (Converged in 781/1000 Repetitions)
Average estimate .94 -1.22 —.027 .10 .49
Percent bias 6.8 -6.9 -7.1 -27.0 -2.97
Average SE estimate® 31 47 .034 62 81
Monte Carlo SE .25 .38 .032 .59 .78
(Mean-squared error)'/? 26 .39 .032 59 78
Median absolute error 14 21 .020 37 .49
Coverage probability (in %) of nominal®
90% interval 95.1 94.9 98.1 98.5 96.9
95% interval 97.4 96.4 99.6 99.4 98.6
b. Regression Calibration Method 2 (Converged in 1000/1000 Repetitions)
Average estimate 7 —.94 —.022 11 44
Percent bias -12.3 17.5 11.0 ~22.6 -12.8
Average SE estimate® 14 .19 024 42 55
Monte Carlo SE 12 .18 022 41 .53
(Mean-squared error)'/? .16 27 022 41 54
Median absolute error 13 .22 .015 27 .35
Coverage probability (in %) of nominal®
90% interval 73.7 66.7 92.4 91.3 91.3
95% interval ’ 82.7 77.3 97.2 96.4 95.7

2T and D were simulated as log normal with E(T) = 6.37, SD(T) = 2.5, E(D) = 3.97, SD(D) = 2.0.
Measurement error variances were 40% of the true covariate variances.

b Square-root of mean jackknife variance estimate computed using (6).

€ Interval computed as estimate % z,, /2SE, where z,, /2 is the appropriate standard normal percentage point.

The approach of Armstrong et al. (1989) explicitly uses the
case/control information as part of a discriminant analysis
model and therefore may be a good choice if one is willing to
make the necessary multivariate normal discriminant model
assumptions. »

If one uses root mean-squared error as-a summary combined
measured of bias and variability, then neither the conditional
scores nor regression calibration method 2 measurement error
correction confers an advantage over.no -correction for small
numbers of matched sets. But as the number of matched sets
increases, both correction procedures produce mean-squared
errors that are the same or better (smaller) than those ob-
tained using no correction. Furthermore, if we use confidence
interval coverage as our ctiterion, then the correction methods
produce uniformly better results.

When relative risks or measurement errors were large but
covariate distributions were still Gaussian, the conditional
scores procedure was prone to convergence problems and re-
sulted in slightly more biased estimates in small samples. Non-
Gaussian measurement error caused both correction meth-
ods to produce biased estimates. When true covariates were
generated from non-Gaussian highly skewed distributions, re-
gression calibration method 2 produced substantially biased
estimates. Conditional scores experienced some convergence
problems in these settings, but when it did converge, it pro-
duced estimates with smaller bias and much better confidence

interval coverage. Moreover, the convergence problems could
be greatly reduced by increasing the number of matched sets.’
Thus, the settings in which the conditional scores method
would be most useful and preferred over the regression cali-
bration method include those in which there is at least a mod-
erately large number of matched sets and it is suspected that
true covariate distributions may be highly skewed. Although
sometimes highly skewed covariates can be transformed to
Gaussian, this is often not possible, and transformations also
can make model interpretation more difficult.

Our simulations assumed that the true measurement error -
variances were known. More likely, only consistent estimates
of the measurement error variance components would be avail-
able, and the variability in them would introduce additional
variability into the corrected parameter estimates. One would
at least want to perform a sensitivity analysis by varying the
assumed degree of measurement error. As a better alternative,
we described a parametric bootstrapping procedure using the
estimated asymptotic distribution of the variance estimates
to adjust for variability in measurement error variance es-
timates. For small variability studies, the appropriateness of
the asymptotic distribution might be questionable. One could
bootstrap the entire variability study data set and reestimate
the measurement error variances for each data set, but this
could be computationally prohibitive. If one estimates mea-
surement error variances from an external variability study,
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great care also must be taken so that the variability character-
istics of the external study are representative of the variability
in the main study. The dramatic effect demonstrated in this
study of the measurement error on bias of the parameter es-
timates should serve as motivation for researchers to collect
sufficient samples to properly estimate measurement error as

. part of their main study. In many cases, when biorepositories

are initiated, it would be feasible to plan to collect multiple
specimens over time from a subset of study participants in
order to obtain measurement error variance estimates from
an internal variability study.

Several generalizations of the conditional scores method
are possible. Our derivation assumed Gaussian nondifferen-

‘tial measurement error with constant variance. Problems of

heteroscedasticity may potentially be handled by appropriate
transformations of the error-prone covariates. Non-Gaussian
measurement error would result in a different form for the suf-
ficient statistics for the di,'s, but the sufficient statistics may
be difficult to derive. The method can be easily generalized to
unequal matching. Similarly, our methods could be adapted
to handle replicated w’s on some subjects, such as from an
internal variability study. If samples within a matched set
are not matched on batch, we discussed how the derivation
of the sufficient statistics could become difficult. However, if
the batch-to-batch variance is very small relative to the other
measurement error variance components, it may be possible

‘to ignore the batch effects and the correlations they induce

and still obtain reasonable corrected estimates.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the Alpha-Tocopherol Beta-
Carotene Cancer Prevention Study (supported by NCI Public
Health Service contract NO1CN45165 from the National Can-
cer Institute, National Institutes of Health, Department of
Health and Human Services) for use of the data. R. Carroll’s

research was supported by a grant from the National Cancer

Institute (CA-57030) and was partially completed during a
visit to the Biostatistics Branch, Division of Cancer Epidemi-
ology and Genetics, National Cancer Institute. This work was
initiated while L. McShane was a member of the Biometry
Branch, Division of Cancer Prevention and Control, National
Cancer Institute.

RESUME

Nous proposons une méthode basée sur des scores condition-
nels pour obtenir des estimateurs, corrigés pour le biais, des
log odds ratios dans les études cas-contréles appariées, ol une
ou plusieurs covariables sont sujettes & erreurs de mesure.
L’approche suppose que l'on conditionne par rapport a des
statistiques exhaustives pour les valeurs exactes non observ-
ables des covariables, celles-ci étant traitées comme des para-
metres fixes inconnus. Dans le cas d’erreurs de mesure gaussi-
ennes non-différentiables, nous obtenons un ensemble d’équa-
tions de scores fidéles (non biaisés) permettant d’estimer le log
OR des parametres étudiés. La procédure permet d’éliminer
avec succes le biais des estimations naives, et les erreurs types
des estimations sont obtenues par des méthodes de rééchantil-
lonnage. Nous présentons un exemple appliqué & des données
d’une étude cas-controle appariée du cancer de la prostate et
des taux d’hormone sériques circulants, et nous comparons la
performance de notre méthode avec celle des procédures de
calibration par régression.
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APPENDIX A
Derivation of Conditional Likelihood

Observe that the likelihood (4) equals I'I,i{:l Uk (B), where I}, (B8)
= Pr[Yy | @, 2, (T} = 1)], allowing us to perform some
algebraic manipulations on k(B) to put it in a form more
amenable to deriving a sufficient statistic. Noting that

M+1

— (k1B + zl/cl:Bz) = Z Yij (2518z + 218:)

=1

when T}, = Ejni'l*l Yij = 1 and multiplying numerator and
denominator of I,(8) by exp[—(z}, Bz + 241 8z)), we obtain

M+1
exp E Yij { (ks — x1) B + (2kj — 211)'B: }
i=2
M+1
L+ 3 exp {(mkj — mx1) 8o + (2t — 251)'B: }

=2

. Write the denominator as {S1(dkz, di,, B)} L. Define B, =
(Ye2Be, YaaBe, ..., Yi pr410,)" and By, = (YkeB,, Yiaf3.,
veey Yk,M+1ﬂ;), so that

1(B) = S1(dks, dy., B) exp (Bl dy, + Bj.dy.)
= Pr{Y, ' Tk, 2, (Ty, = 1)}

Now we show that A = diw + g, g, By, is sufficient for
d, treating B, as known, when the {dr.} are independent
across matched sets. Sufficiency is demonstrated by showing
that Pr{Y; | Ay, diy,dy,, (T, = 1)} does not depend on
di. The independence of the {dk.} allows one to derive the
sufficient statistics separately on each lx(8). This indepen-
dence is achieved under our measurement error model when
all samples from the same matched set are assayed in the
same lab batch. If the {d,} (and hence the {dkw}) were de-
pendent, then sufficient statistics would have to be derived
by starting with the full likelihood ¥, 14(B) and condi-
tioning on a joint distribution of sufficient statistics. This
makes the derivation considerably more difficult, sometimes
intractable. Under Gaussian nondifferential measurement er-
ror and independence of the {diy)} across strata, Pr{Y} |
Ary, di, dy,, (T =1)} = Pr{Y | Az, A, (Ti, = 1} s0

Pl’{yk,dkw l dkzydkz) (Tk = 1)}
=Pr{Y} | die, dy,, (T} = 1)}

(B) =
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X Pr{dkw , dkz’dk:za (T = 1)}
= constant x I (3)

1 -
X exp {_g(dkw - dkz)lzdul,du (dkw - dk:z)}
= SZ(dk:c: dkz) ﬁ)
X exb {(dhs + B, 0, B10) B3 4 dis + Bl
1 -
- 5403 4. dlm},
where
SZ (de! dkz: :6) = constant x Sl (dlc:u dkz’ :3)
1 -
X exp (—Edgz)l‘dul,du dkz) .
Transforming from (Yx, diyy) to (Y5, Ag) gives
Pr{Ye, Ag | dig, s, (Tx = 1)}
= S(dgg, di., )
X exp (A;cz:;j,dudkx - %A@E;:’duAk)
1 -
xexp (BioAy + By, - 1B 70, By.).
Then
Pr{Ye | Ak, dy, di, (Ty = 1))
1 -
= exp (B;c:cAk + B;czdkz - —Z-B;“”Edj,du ka)

+ Z exp (B;czAk + B;czdkz

Yis.t. Tp=1
1 -
- §B;cx2dul,du3kz)
M+1
= exp Z Yy; {tsllcjﬂa: + (zkj - zkl)’,Bz}
Jj=2
1 M+1 M+1
T2 Z Z Yi;YijBrBa, ;e
=2 j'=
M+1
- Z €xp Z Yiej {8k8z + (2kj — 211)'B: }
Y s.t. T =1 =2
1 M+1 M+1
2 Z Yi;Yey BaZa, ;1 Bs |,
j=2 j'=2

where 8y ; denotes the jth P1 X1 vector element of Ay Noting
that Yj;;Yijr = 0 when j # 5, Y = Yij, and Bg_,; =
d,,2,2 for 7 > 2, the above expression reduces to

M+1 . ,
[1 + Z exp{ (5kj - §>3du,2,2ﬂz) Be
j=2 )

-1
+ (25 — 21)' B }J
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under the usual convention that the observed case is desig-
nated as the first subject in each matched set. Recall that
Ar = dy,, + Xd,,d, Bie is held fixed at the value for the
observed data, i.e., Y;; = 1, Yi; =0, >2 Then Ay = dy.y
and 8 reduce to wy, j —Wk1, which henceforth will be denoted
by djy,. Multiplying terms Pr{Yy | Ak, diz, d,, (T = 1)}
over K matched sets, the full conditional likelihood is

Pr{¥0, Yoo Yo | (A di e, T = DI, )

-1

K M+1
=[1{1+ Y exp (vhsBe + d}1u8.) b,
k=1 j=2

where yi; = dj oy, — (1/2)24, 2,28z and dy; is defined anal-
ogously to digjry.

APPENDIX B
Numerical Solution Methods

Here we address the problem of solving for 3 that maximizes
a likelihood

-1

K M+1
L@)=1J |1+ > exp(ck,8)
k=1 j=2

For the case of no measurement error,

k=1,2,...,K; j=2,3,.... M +1.
(B.1)
For the conditional scores approach, 8 = (8, 8.) and

Ckj = Tkj — Tk1,

ks = (Vejrdisz)',  k=1,2,... K; j= 2,3,...,M+1.
' (B.2)
By Newton’s method, we iteratively solve for the maximizer

of L(3), denoted S, using

Brt1 = Bn ~ [V29(Bn)] " Vo(Bn), (B.3)

where Vg is the gradient vector and V2 g is the Hessian matrix
for g. Under no measurement error, apply (B.3) directly af-
ter substituting (B.1). For the conditional scores method, we
propose nesting (B.3) within a series of iterations as follows.

e © _ (20 40)\ .

Step 1: With an initial guess B\ = (8B, , 8, ), iterate
using (B.3) with ¢y; = (wfcj - 'w;cl,z;cj -zy), k=
1,2,.,..,K;/j = 2,3,...,M + 1, to obtain ,B(l) =
(,@:(,1) , 9) ) as though there were no measurement
error in the covariates.

Step 2: Set v\ = dijo, — (1/2)2q, 2280, k=1,2,... K
i=23... M+l -
Step 3: Form=2,3,...,

(a) Iterate using. (B.3) evaluated at Tkj = *y,g'jn_l) , k=
{,(2,)...,1(; J=23,...,M + 1 until convergence to

B™.

(b) Update %7 = dyj,, ~ (1/2)%, 280, k=1,2, .
K;j=23,...,M+1. . i

(c) Repeat steps (a) and )b) until ||(m+D) — gom) o
el B+,

As discussed by Stefanski and Carroll (1987), maximizing
the likelihood directly for B after substituting for each Yij its
expression in terms of B does not lead to the desired solution.
One must solve the conditional score equations holding the
{7x;} fixed, and fortunately this can be done with standard
conditional logistic regression software.

Because the conditional score equations are unbiased esti-
mating equations, regularity conditions will ensure the exis-
tence of a consistent solution. However, as Stefanski and Car-
roll (1987) point out in a more general setting, there is not a
guarantee of a unique solution, and some of the solutions may
not be consistent. While there is no definitive solution to this
problem, in practice, they found that, when multiple solutions
are detected, the solution closest to the naive estimator (ig-
noring measurement) error will often be a good choice if the
measurement error is not too large.




