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SUMMARY

Statistical methods for testing and interval estimation of the ratio of marginal probabilities in the
matched-pair setting are considered in this paper. We are especially interested in the situation where
the null value is not one, as in one-sided equivalence trials. We propose a Fieller-type statistic based on
constrained maximum likelihood (CML) estimation of nuisance parameters. For a series of examples,
the signi;cance level of the CML test is satisfactorily close to the nominal level, while a Wald-type
test is anticonservative for reasonable sample sizes. We present formulae for approximate power and
sample size for the CML and Wald tests. The matched design is seen to have a clear advantage over
the unmatched design in terms of asymptotic e=ciency when the two responses of the pair are highly
positively correlated. We recommend the CML method over the Wald method, especially for small or
moderate sample sizes. Published in 2002 by John Wiley & Sons, Ltd.

KEY WORDS: constrained maximum likelihood estimator; e=ciency of matching; equivalence test in
matched–pair studies; power; ratio of marginal probabilites; sample size determination

1. INTRODUCTION

There has been considerable interest recently in analysis of data arising from a matched-pairs
design, when the aim is not necessarily to test a hypothesis of no diAerence. An example is the
comparison of two screening or diagnostic tests. Such comparisons include, but are not limited
to, one- and two-sided tests of equivalence (Blackwelder [1]). For example, we might assume
a new screening or diagnostic test is equivalent to an established procedure, or nearly so, and
set out to show that the performance of the new test is in some respect within a prespeci;ed
quantity of that of the standard test, on either the arithmetic or multiplicative scale.
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Table I. Observations and probabilities in a matched-pair study

Experimental Control treatment Total Experimental Control treatment Total
treatment treatment

Positive Negative Positive Negative

Positive x11 x10 x1: Positive p11 p10 P1
Negative x01 x00 x0: Negative p01 p00 1− P1

Total x:1 x:0 n Total P0 1− P0 1

Testing a hypothesis of a non-zero diAerence between marginal probabilities in a matched
pairs design has been considered by Lu and Bean [2], Nam [3] and Tango [4; 5]. In some
situations it is more natural, however, to consider the ratio of the marginal probabilities;
for example, in comparing the sensitivities of two tests when the null value is not one.
Lachenbruch and Lynch [6] approached a two-sided version of this problem by means of a
Wald statistic – that is, statistics in which the variance is estimated by maximum likelihood
with no constraints. VanRaden et al. [7] suggested a likelihood scores approach as described
by Bartlett [8], but they did not present a solution in closed form.
In this paper we derive a Fieller-type statistic, similar to that of Lachenbruch and Lynch

[6], but with the variance estimated by maximum likelihood constrained by a speci;ed value
of the ratio of marginal probabilities. We show that the type I error rate of the resulting
test procedure is quite close to nominal values for reasonable sample sizes, whereas that
of the Wald statistic may be considerably higher than the nominal value. We also suggest
a con;dence interval procedure that corresponds to the test statistic and derive asymptotic
expressions for power and sample size. We provide examples for numerical illustration and
discuss them in some detail.

2. MODEL AND NOTATION

Suppose we have n pairs of matched observations on a dichotomous variable, with one obser-
vation of the pair resulting from an experimental treatment (for example, experimental drug,
new test) and the other from a control treatment (for example, standard therapy or test, or
placebo). Let xij be the number of observations with response i for the experimental treatment
and response j for the control treatment, where i and j=1 or 0 for a positive or negative
response, respectively. We assume the xij follow a multinomial distribution with probabili-
ties pij (i; j=0 or 1), where the pij sum to 1, and de;ne P1 =p11 + p10, P0 =p11 + p01.
Then P1 and P0 are the probabilities of a positive response with the experimental and con-
trol treatments, respectively. We may display the observations and probabilities as shown in
Table I.
We are interested in inferences on the ratio of marginal probabilities 	=P1=P0. Note that,

for 	 �=1, p11 = (p10 − 	p01)=(	 − 1) and p00 = {	(1 − p10) + p01 − 1}=(	 − 1). Thus for
	 �=1 the multinomial probabilities pij can be expressed as functions of 	;p10 and p01.
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3. TEST STATISTIC AND INTERVAL ESTIMATION

From the above, we can write the log-likelihood function as

ln L= x11 ln(p10 − 	p01)− (x11 + x00) ln(	− 1) + x10 lnp10 + x01 lnp01

+ x00 ln{	(1− p10) + p01 − 1}

where 	 is the parameter of interest and p10 and p01 are considered nuisance parameters.
The (constrained) maximum likelihood (CML) estimators of p10 and p01 for a given value
of 	 are obtained by solving the two equations @ ln L=@p10 = 0 and @ ln L=@p01 = 0. Denoting
the solutions by p̃10 and p̃01, we have

p̃10 = [−P̂1 + 	2(P̂0 + 2p̂10) + {(P̂1 − 	2P̂0)2 + 4	2p̂10p̂01}1=2]={2	(	+ 1)} (1)

and

p̃01 =	p̃10 − (	− 1)(1− p̂00)

where P̂1 = x1:=n, P̂0 = x:1=n, p̂10 = x10=n; and p̂01 = x01=n (Appendix A). Note that values of
p̃10 and p̃01 are located in [0; 1) (Appendix B).

Suppose, for example, that we wish to demonstrate that the proportion of positive results
with a new test is at least a factor 	0 of the proportion of positives with an established test.
Then we test the null hypothesis H0:	6	0 against the one-sided alternative H1:	¿	0. For
	0¡1, H1 has the form of a one-sided equivalence, or non-inferiority, hypothesis. For 	0 = 1,
H0 is the conventional null hypothesis that P16P0.

In this paper we are primarily interested in the one-sided setting. However, we may be
interested in inference about 	 in both directions. In a two-sided equivalence setting, we
would test H0:	61=	0 or 	¿	0, for 	0¿1, against H1: 1=	0¡	¡	0.
We can express H0 as two separate one-sided hypotheses, both of which must be rejected

in order to reject H0. If each of the separate hypotheses is tested at signi;cance level �, then
the overall signi;cance level is 6�, but the type II error rate for the alternative that 	=1
is approximately 2�, if � is the type II error rate for each of the one-sided tests [1]. From
the relation P1 − 	P0 = 0; we consider a Fieller-type statistic T (	)= P̂1 − 	P̂0. For 	=	0,
T (	0) is asymptotically normally distributed with expectation 0 and variance 	0(p10 +p01)=n
(Appendix C, (C1)). An appropriate test statistic for large n is then

z(	0)= n1=2(P̂1 − 	0P̂0)={	0(p̃10 + p̃01)}1=2 (2)

where p̃10 and p̃01 are evaluated at 	=	0. We refer to z(	0) as a constrained maximum
likelihood (CML) statistic. We reject H0:	6	0 in favour of H1:	¿	0 if z(	0)¿z1−�, where
z1−� is the upper 100(1− �) percentage point of the standard normal distribution.

The lower and upper limits, 	L and 	U, of an estimated 100(1 − 2�) per cent con;dence
interval for 	 are the solutions of the equations

z(	)=±z1−� (3)
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692 J. NAM AND W. C. BLACKWELDER

(Appendix D). Then an equivalent test of H0 is to reject if 	L¿	0. The limits 	L and 	U

can be found by an iterative procedure, for example, the Newton–Raphson algorithm or the
bisection method [9].
A Wald-type statistic for testing H0 can be written as

zw(	0)= n1=2(P̂1 − 	0P̂0)={	0(p̂10 + p̂01)}1=2 (4)

Note that z and zw diAer only in the standard error estimate in the denominator. The statis-
tic z employs CML estimates of the nuisance parameters p10 and p01, given 	=	0, whereas
zw uses unconstrained maximum likelihood estimates. For 	0 = 1, both statistics reduce to
McNemar’s statistic [10], just as the one-sided null hypothesis reduces to the conventional
hypothesis that 	61. (Note, however, that the two-sided null hypothesis in an equivalence
setting, H0:	61=	0 or 	¿	0, does not reduce to the usual hypothesis that 	=1. The statis-
tics (2) and (4) are in general form and are applied more broadly than in equivalence trials.)
For simplicity, we shall refer to z and zw as CML and Wald statistics, respectively.

We could de;ne hypotheses and tests based on  =(1 − P1)=(1 − P0). However, since
 =1+ {(1−	)P0=(1− P0)} is a function of both 	 and P0, a hypothesis about 	 cannot in
general be expressed in terms of  . Unless there is interest in both 	 and  , we can always
de;ne the parameters so that the ratio of interest is 	.

4. POWER AND SAMPLE SIZE

We denote the asymptotic limits of the CML estimates p̃10 and p̃01 by Rp10 and Rp01, respec-
tively. Then Rp10 = [−P1 +	2

0(P0 + 2p10) + {(P1 −	2
0P0)

2 + 4	2
0p10p01}1=2]={2	0(	0 + 1)} and

Rp01 =	0 Rp10 − (	0 − 1)q00 where q00 = 1− p00.
For convenience we denote T (	0)= P̂1−	0P̂0 by T0. The asymptotic form of the estimated

variance of T0 under the null hypothesis is

RV0(T0)=	0( Rp10 + Rp01)=n

The expectation and variance of T0 under the alternative hypothesis H1:	=	1, where 	1¿	0,
are

E1(T0)= (	1 − 	0)P0 (5)

and

V1(T0)= {(	1 + 	2
0)P0 − 2	0p11 − (	1 − 	0)2P2

0 }=n
(Appendix C, (C2)). For large samples the approximate power 1−� of the CML statistic (2)
for testing H0:	6	0, given the alternative that 	=	1¿	0, is obtained by

power 1− �=1−S(u) (6)

where u=[z1−a{ RV0(T0)}1=2−E1(T0)]={V1(T0)}1=2 and z1−� and S are the upper (1−�) quantile
and cumulative distribution function, respectively, of the standard normal distribution. The
approximate sample size required for power 1 − � can be found from the equation (see, for
example, reference [11])

E1(T0)= z1−a{ RV0(T0)}1=2 + z1−�{V1(T0)}1=2
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Then the approximate sample size (pairs of matched observations) for testing the one-sided
hypothesis H0 against alternative H1 based on the CML statistic, using (5), is

n= {z1−a Rv
1=2
0 + z1−�v

1=2
1 }2={(	1 − 	0)P0}2 (7)

where Rv0 =	0( Rp10 + Rp01); v0 =	0(p10 + p01) and v1 = (	1 + 	2
0)P0 − 2	0p11 − (	1 − 	0)2P2

0 .
For testing the two-sided hypothesis that 	6	0 or 	¿1=	0, where 	061, if the true values
P1 and P0 are assumed to be equal, then the approximate sample size for power 1− � can be
calculated from (7) by replacing � with �=2 [12].
A formula for approximate sample size based on the Wald statistic is

nw = {z1−�v
1=2
0 + z1−�v

1=2
1 }2={(	1 − 	0)P0}2 (8)

5. EVALUATION OF CML AND WALD METHODS

In practice, sample sizes for a matched-pair design may not be large. Thus it is important to
assess the properties of any asymptotic test for small and medium sample sizes. There are
(n + 3)(n + 2)(n + 1)=6 possible outcomes for a given sample size n. For the case x00 = n;
both the CML and Wald statistics are indeterminate. For either statistic the exact signi;cance
level for testing H0:	6	0 can then be expressed in the form

∑

x∈R
Pr(x |	=	0)={1− Pr(x00 = n)}

where x′=(x11; x10; x01; x00); R is the critical region in which H0 is rejected, and Pr(x |	=	0)
is the multinomial probability of observing x for 	=	0. Table II summarizes computations
of signi;cance levels corresponding to a nominal one-sided signi;cance level � of 0.05 for
	0 = 0:8, 0.9; P0 = 0:8, 0.65, 0.5; p10 = 0:05, 0.10, 0.15; and n=25, 50, 100. The signi;cance
levels shown are exact. In all these cases, as in many practical applications, the correction
factor {1−Pr(x00 = n)} is negligible. The table indicates that, for the cases studied, the CML
statistic has signi;cance level reasonably close to the nominal 0.05 and is generally slightly
conservative. On the other hand, the Wald statistic is generally anticonservative – that is,
signi;cance levels associated with it are generally higher than the nominal level.
Approximate sample sizes from (7) for the CML statistic are shown in Table III for 80 per

cent power and various combinations of the other parameter values. Calculations of the exact
power for these n6100 are also shown. The calculations indicate that, even for fairly small
sample sizes, the power is close to, and often slightly larger than, the nominal value. A large
sample size is needed when a diAerence between null and alternative is small. The required
sample size increases as P10 increases and=or P0 decreases. Sample sizes from (8) for the
Wald statistic are somewhat smaller than those shown in Table III, but the anticonservative
nature of the Wald statistic falsely inTates its power and makes it undesirable for general use.

6. EXAMPLES

We provide two illustrative examples, corresponding to relatively small and large sample sizes.
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Table II. Actual levels of signi;cance, from exact calculation, for Wald and CML
tests at nominal 5 per cent level.

	0 P0 p10 n=25 n=50 n=100

Wald CML Wald CML Wald CML

0.8 0.80 0.05 0.078 0.045 0.065 0.047 0.059 0.048
0.10 0.065 0.050 0.058 0.049 0.054 0.050
0.15 0.059 0.052 0.056 0.050 0.052 0.050

0.65 0.05 0.075 0.047 0.065 0.048 0.059 0.049
0.10 0.064 0.048 0.057 0.049 0.054 0.050
0.15 0.059 0.049 0.054 0.050 0.052 0.050

0.50 0.05 0.074 0.047 0.064 0.048 0.057 0.049
0.10 0.061 0.049 0.055 0.049 0.052 0.050
0.15 0.056 0.050 0.053 0.051 0.051 0.050

0.9 0.80 0.05 0.083 0.043 0.071 0.046 0.062 0.048
0.10 0.072 0.046 0.060 0.048 0.056 0.050
0.15 0.066 0.048 0.057 0.050 0.053 0.050

0.65 0.05 0.082 0.047 0.068 0.047 0.061 0.048
0.10 0.067 0.050 0.058 0.049 0.055 0.050
0.15 0.061 0.050 0.056 0.050 0.053 0.050

0.50 0.05 0.093 0.041 0.066 0.048 0.059 0.048
0.10 0.066 0.048 0.057 0.051 0.054 0.050
0.15 0.060 0.049 0.054 0.051 0.052 0.050

6.1. Example 1

Consider data of x11 = 17; x10 = 2; x01 = 1 and x00 = 10; then n=30 pairs. The rate of positives
on the new treatment and the standard are P̂1 = 19=30 and P̂0 = 18=30 and the rate ratio is
	̂=1:0556. We want to show that the positive response rate with the new treatment is at
least a factor 	=0:9 of the rate with standard treatment, and we test 	60:9 against 	¿0:9.
The CML estimates are p̃10 = 0:0382 and p̃01 = 0:1011 from (1), and the CML and Wald
statistics are z=1:444(p=0:074) and zw =1:703(p=0:044) from (2) and (4), respectively.
Considering the anticonservative nature of the Wald test, particularly for small sample sizes,
that test may falsely claim signi;cance at the 5 per cent level. Conventional 90 per cent
con;dence intervals for 	 by the CML and Wald methods are (0.872, 1.303) and (0.905,
1.231), respectively.

6.2. Example 2

Blake et al. [13] investigated whether certain vaginal infections could be satisfactorily diag-
nosed without using a speculum. Vaginal specimens were collected from participants, both
with and without the use of a speculum, and evaluated by microscopic examination for the
presence of trichomonas organisms. Ninety-nine patients among 686 study participants were
positive for trichomonas by one of the two study methods or by culture, which served as

Published in 2002 by John Wiley & Sons, Ltd. Statist. Med. 2002; 21:689–699
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Table III. Approximate sample size required for 80 per cent power for CML tests
at �=0:05 and actual power from exact calculation for those n6100.

P0 p10 	0 = 0:8 versus 	1 = 1:0 	0 = 0:9 versus 	1 = 1:0

n (exact power) n

0.8 0.05 34 (0.83) 112
0.10 50 (0.82) 189
0.15 67 (0.81) 272

0.65 0.05 47 (0.83) 160
0.10 71 (0.81) 280
0.15 97 (0.81) 406

0.50 0.05 71 (0.83) 254
0.10 113 462
0.15 159 679

0.40 0.05 102 381
0.10 170 713
0.15 243 1055

0.20 0.05 343 1429
0.10 636 2801
0.15 939 4185

the reference standard. Of these 99, 67 were positive for trichomonas by both study meth-
ods, 9 were positive only when the speculum was not used, 7 were positive only when the
speculum was used, and 16 were negative by both methods. Then for this example x11 = 67;
x10 = 9; x01 = 7; x00 = 16; P̂1 = 76=99=0:77 and P̂0 = 74=99=0:75. Since all 99 of the females
were considered positive by at least one method, the estimates P̂1 and P̂0 can be considered
estimates of sensitivity, assuming there were no false positives. The estimated ratio of sen-
sitivities is 76=74, or 1.03. It was desired to demonstrate that the non-speculum collection
method is at least 90 per cent as sensitive as the speculum method. For 	0 = 0:9, from (1)
we have p̃10 = 0:0591 and p̃01 = 0:1370; from (2) the CML statistic is z(0:9)=2:248, and the
p-value for testing H0 is 0.012. We can then reject the null hypothesis and conclude that
the non-speculum method is more than 90 per cent as sensitive as the speculum method. The
Wald statistic (4) is greater than the CML statistic (zw(0:9)=2:447), which is consistent with
the anti-conservativeness of the Wald statistic. From (3), the usual two-sided 90 per cent
con;dence interval for 	 is (0.937, 1.130).
Now suppose we are planning a trial with 	0 = 0:9; 	1 = 1; �=0:05; P0 = 0:75 and

p01 = 0:07. The approximate sample sizes from (7) for 80, 90, and 95 per cent power are
n=162, 221 and 276, respectively. From (6), the asymptotic power of the CML test for the
above assumptions and n=99 is 61 per cent, which indicates that the study by Blake et al.
had fair power if the two diagnostic tests were equally sensitive.
For this example we might also evaluate the ratio of false negative rates, the observed

values of which are 25=99 and 23=99. If data were available for the two diagnostic tests
on specimens known to be negative for trichomonas, we could perform hypothesis tests and
interval estimation on the ratio of speci;cities.
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7. EFFICIENCY OF MATCHING

Consider applying the two treatments to two independent samples of equal size n. The ob-
served proportions P̂∗

1 and P̂∗
0 will be independent, and the variance of T ∗

0 = P̂∗
1 − 	0P̂∗

0 can
be written V (T ∗

0 )= {P1(1− P1) + 	2
0P0(1− P0)}=n. A statistic for testing H0:	6	0 is

z(	0)= n1=2(P̂∗
1 − 	0P̂∗

0 )={P̃1(1− P̃1) + 	2
0P̃0(1− P̃0)}

where P̃1 and P̃0 are maximum likelihood estimates of P1 and P0 for 	=	0 (see, for example,
references [12] and [14]). Rearranging terms from (5) and substituting P1 =	P0 in the above
expression for V (T ∗

0 ), we see that V (T ∗
0 )−V (T0)=2	0(p11−P1P0)=n=2	0�{V (P̂1)V (P̂0)}1=2,

where � is the correlation coe=cient between P̂1 and P̂0. Then if �¿0; V (T ∗
0 )¿V (T0) and

the matching increases e=ciency. The asymptotic relative e=ciency (ARE) of the unmatched
test relative to the matched test is

ARE=V (T0)=V (T ∗
0 )=1− 2�	0{V (P̂1)V (P̂0)}1=2=V (T ∗

0 )

ARE¡1 when �¿0; and ARE decreases as � increases. Usually � will be considerably
greater than 0, and the gain in e=ciency will be appreciable. This result is consistent with
the increased e=ciency of the matched design for testing a non-zero diAerence between two
treatments [3]. In some applications, such as the example in the previous section of testing for
trichomonas infection, there are also the added advantages, including lower cost, of having
only n individuals in the study, rather than 2n as in the unmatched design.

8. DISCUSSION

We have derived a Fieller-type statistic for testing and estimation of the ratio of marginal
proportions when the data are in the form of matched pairs. The variance for this statistic
was estimated by maximum likelihood constrained by a speci;ed value of the ratio. The
test statistic appears to have signi;cance level satisfactorily close to the nominal value for
sample sizes as small as 25 pairs. Power is also close to that calculated from an asymptotic
approximation. A Wald statistic does not have appropriate signi;cance levels for sample sizes
likely to be attained in many applications. Therefore, we recommend the CML statistic for
general use in the matched-pair setting for analysis of the ratio of marginal proportions.

APPENDIX A: CONSTRAINED MAXIMUM LIKELIHOOD ESTIMATORS OF
NUISANCE PARAMETERS

From the likelihood in Section 3, the partial derivatives with respect to p10 and p01 are

@ ln L
@p10

=
x11

p10 − 	p01
+

x10
p10

− x00	
	(1− p10) + p01 − 1

and

@ ln L
@p01

=− x11	
p10 − 	p01

+
x01
p01

+
x00

	(1− p10) + p01 − 1
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De;ne p̂ij = xij=n for i; j=0; 1: The MLEs of p10 and p01 for a given value of 	; p̃10 and
p̃01, are a solution to @ ln L=@p10 = 0 and @ ln L=@p01 = 0 evaluated at a given value of 	:

p̃11p̃10(	− 1− 	p̃10 + p̃01) + p̂10(p̃10 − 	p̃01)(	− 1− 	p̃10 + p̃01)

−p̂00	(p̃10 − 	p̃01)=0 (A1)

and

−p̂11	p̃01(	− 1− 	p̃01) + p̂01(p̃10 − 	p̃01)(	− 1− 	p̃10 + p̃01) + p̂00p̃01(p̃10 − 	p̃01)=0
(A2)

Dividing by (p̃10 − 	p̃01) after adding (A1) and (A2), we have a relation

p̃01 =	p̃10 − (	− 1)(1− p̂00) (A3)

We can simplify the (A1) after substituting (A3) in (A1) as

	(	+ 1)p̃2
10 + {P̂1 − 	2(1 + p̂10 − p̂00)}p̃10 + 	(	− 1)p̂10(1− p̂00)=0

where P̂1 = p̂11 + p̂10. A solution of the above quadratic equation is the MLE of p10 for a
given value of 	 in (1), Section 3 and the constrained MLE of p01 follows from (A3).

APPENDIX B: RANGE OF CML ESTIMATORS OF p10 and p01

1. From (1), we can rewrite the CML estimator of p10 for a given value of 	 as

p̃10 = {−P̂1 + 	2P̂0 + 2	2p̂10 + V}={2	(	+ 1)} (B1)

where V= {(P̂1 − 	2P̂0)2 + 4	2p̂10p̂01}1=2.
Since |P̂1−	2P̂0|6V6|P̂1−	2P̂0|+2	(p̂10p̂01)

1=2, we can show the following inequalities
from (B1):

06
	p̂10

	+ 1
6p̃106

	p̂10 + (p̂10p̂01)
1=2

	+ 1
¡1

when P̂1 − 	2P̂0¿0 and

06
	2P̂0 − P̂1 + 	2p̂10

	(	+ 1)
6p̃106

	2P̂0 − P̂1 + 	2p̂10 + 	(p̂10p̂01)
1=2

	(	+ 1)
¡1

when P̂1 − 	2P̂060. Therefore, the p̃10 is in the interval [0; 1).
2. Recall p̃01 =	p̃10 + (1− 	)(1− p̂00). Then, we can rewrite p̃01 as

p̃01 = (P̂1 − 	2P̂0 + 2p̂01 + V)={2(	+ 1)}:
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From the above inequality for V, we have the following:

06
P̂1 − 	2P̂0 + p̂01

	+ 1
6p̃016

P̂1 − 	2P̂0 + p̂01 + 	(p̂10p̂01)
1=2

	+ 1
¡1

when P̂1 − 	2P̂0¿0 and

06
p̂01

	+ 1
6p̃016

p̂01 + 	(p̂10p̂01)
1=2

	+ 1
¡1

when P̂1 − 	2P̂0¡0.
Therefore, p̃01 is also in the interval [0; 1).

APPENDIX C: VARIANCE OF T

The variance of T = P̂1 − 	P̂0 is V (T )=var(P̂1) + 	2 var(P̂0)− 2	 cov(P̂1; P̂0).
Since var(P̂i)=PiQi=n where Qi =1 − Pi for i=0; 1 and cov(P̂1; P̂0)= (p11 − P1P0)=n; the

variance can be expressed as

V (T )=	(p10 + p01)=n (C1)

using a relation of P1 =	P0. Similarly, we obtain the variance of T0 = P̂1 − 	0P̂0 under
H0:	=	0 and that under H1:	=	1 as V0(T0)=	0(p10 + p01)=n and

V1(T0)= {(	1 + 	2
0)P0 − 2	0p11 − (	1 − 	0)2P2

0}=n (C2)

respectively.

APPENDIX D: CONFIDENCE INTERVAL BY CML METHOD

Denote z′(	0)= (P̂1−	0P̂0)={	0(p10+p01)=n}1=2 for any positive real number 	0. The z′(	) is
continuous and monotone decreasing with respect to 	 where 0¡	¡∞, and it is distributed
asymptotically normal with mean 0 and variance 1 for a given value of 	. We may write the
form (2) as

z(	0)= {(p10 + p01)=(p̃10 + p̃01)}1=2z′(	0) (D1)

where 	0 is a positive real number. Since CML estimators of p10 and p01 for 	=	0,
p̃10 and p̃01, are consistent estimators of the parameters, the ;rst factor of the right-hand
side (D1) converges in probability to one. Thus, z(	0) becomes equivalent in probability to
z′(	0).

Recall 	L and 	U as the solutions of the equations, z(	L)= z(1−�) and z(	U)=−z(1−�),
respectively. Using the inverse relation between 	 and z(	), we have z(	)6z(	L) if and
only if 	¿	L and z(	)¿z(	U) if and only if 	¡	U. By combining them, we have

−z(1−�)6z(	)6z(1−�) if and only if 	L6	6	U (D2)

Thus, from (D2), we have Pr(	L6	6	U)=Pr{−z(1−�)6z(	)6z(1−�)}=1− 2� and the in-
terval de;ned by [	L; 	U] is approximate (1− 2�) con;dence interval for 	.
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