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Family studies to identify disease-related genes frequently collect only families with multiple cases. It is often desirable to
determine if risk factors that are known to influence disease risk in the general population also play a role in the study
families. If so, these factors should be incorporated into the genetic analysis to control for confounding. Pfeiffer et al. [2001
Biometrika 88: 933–948] proposed a variance components or random effects model to account for common familial effects
and for different genetic correlations among family members. After adjusting for ascertainment, they found maximum
likelihood estimates of the measured exposure effects. Although it is appealing that this model accounts for genetic
correlations as well as for the ascertainment of families, in order to perform an analysis one needs to specify the distribution
of random genetic effects. The current work investigates the robustness of the proposed model with respect to various
misspecifications of genetic random effects in simulations. When the true underlying genetic mechanism is polygenic with
a small dominant component, or Mendelian with low allele frequency and penetrance, the effects of misspecification on the
estimation of fixed effects in the model are negligible. The model is applied to data from a family study on nasopharyngeal
carcinoma in Taiwan. Genet Epidemiol 24:14–23, 2003. & 2003 Wiley-Liss, Inc.

Key words: ascertainment; conditional logistic regression; correlated binary data; misspecified model; nested random
effects model

nCorrespondence to: Ruth Pfeiffer, National Cancer Institute, 6120 Executive Blvd., EPS 8030, Bethesda, MD 20892-7244. E-mail:
pfeiffer@mail.nih.gov
Received for publication 21 May 2002; Revision accepted 19 June 2002
Published online in Wiley InterScience (www.interscience.wiley.com).
DOI: 10.1002/gepi.10191

INTRODUCTION

This paper was motivated by a linkage study to
find genes that predispose to nasopharyngeal
carcinoma (NPC). The NPC study was a colla-
borative effort between the National Institutes of
Health (Bethesda, MD) and the Institute of
Epidemiology at the National Taiwan University
in Taipei, and is based on a sample of approxi-
mately 150 Taiwanese families. Families were
included in the study only if they had two or
more affected family members. Although the
primary purpose of this study is to detect genes
linked to NPC, it is important to determine if
measured environmental factors that are known to
influence disease risk in the general population
also play a role in the study of families. If so, these
environmental factors should be incorporated into

the genetic analysis to control for confounding
and potentially improve the power to find NPC-
associated genes. It is thus desirable to be able to
use data from family studies to estimate the
effects of environmental exposures before at-
tempting to identify the susceptibility genes.
A second, related problem to which the meth-

ods we discuss apply is the estimation of the effect
of a measured major gene in the presence of
residual genetic correlations induced by other
unmeasured genes or environmental factors.
A natural approach to account for ascertaining

families with a fixed number of cases would be to
conduct a matched case-control analysis with
matching on family, and to use a conditional
logistic regression that conditions on the number
of cases in the family. This approach can lead to
underestimates of exposure effects if genetic
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correlations are ignored [Pfeiffer et al., 2001].
Pfeiffer et al. [2001] gave conditions under which
conditional logistic regression yields unbiased
estimates of measured exposure effects, and
proposed a variance components or random
effects model that accounts for common familial
effects and for varying genetic correlations among
family members. After adjusting for ascertain-
ment, they found maximum likelihood estimates
of the measured exposure effects based on this
model.
Although it is appealing that these procedures

account for genetic correlations as well as for the
ascertainment of the families, in order to perform
an analysis one needs to specify the distribution of
random genetic effects. A criticism of the model
could be that as the gene (or genes) inducing
correlations among the response variables is
unmeasured, no straightforward diagnostics are
available to evaluate the model assumptions. It is
thus important to assess the robustness of the
inference to misspecifications of the random
effects distribution. This issue has been consid-
ered for linear mixed effects models [e.g., Butler
and Louis, 1992; Muthen and Shedden, 1999], and
simulations have shown that estimation of the
fixed parameters is often not severely compro-
mised [e.g., Verbeke and Lesaffre, 1997]. However,
it is not clear how conclusions for the linear case
carry over to the nonlinear setting. Hartford and
Davidian [2000] investigated violations of the
assumptions of normality of the random
effects distribution in nonlinear mixed effects
models via simulations, using first-order
expansions and Laplace approximations to evalu-
ate integrals. Due to the ascertainment correction,
our likelihood does not fall into any of the
standard mixed-effects model frameworks that
were investigated by Hartford and Davidian
[2000].
In this paper, we first modify the ascertainment

correction used in Pfeiffer et al. [2001] to more
accurately reflect the ascertainment in this study
and also greatly simplify the computations. We
then examine the robustness of the estimates of
fixed effects parameters against violations of the
assumptions made for the random genetic effects
in a simulation study. The misspecifications of the
random effects distribution that we study are
motivated by plausible underlying genetic me-
chanisms of NPC. We apply the model to a sub-
set of the NPC data, and also fit the simpler
standard conditional logistic regression model for
comparison.

METHODS

Let Yij denote the binary disease status for the
jth member of the ith family (Yij ¼ 1 if diseased
and 0 otherwise), and Xij; the corresponding
vector of measured covariates for j ¼ 1; . . . ; ni;
and i ¼ 1; . . . ; m. Let ni denote the size of the ith
family and m the total number of families in the
study.
In the two-level random effects model, the

probability pij ¼ PðYij ¼ 1Þ is a function of the
covariate Xij, the random familial effect ai, which
affects all family members equally, and an
individual level random genetic effect gij for the
jth individual in the ith family:

logit ðpijÞ ¼ logitPðYij ¼ 1jai; gij; XijÞ
¼ mþ saai þ sggij þ bXij: ð1Þ

The ai are assumed to be independent and
identically distributed with EðaiÞ ¼ 0 and
varðaiÞ ¼ 1, and are assumed to be independent
of the gijs in the general population. The gijs have
mean zero, variance one, and are correlated within
the ith family. The specification of the correlation
structure is given below.
Model (1) is appealing because it allows one to

combine information on an individual’s measured
characteristics and covariates, Xij, with a measure
of the genetic liability, gij. In this model, b
describes the increase in log relative odds from a
unit increase in exposure, X, for an individual
conditional on the random effects. In the NPC
study, scientists plan to measure candidate genes.
Once the genes are measured, they can be
included as known covariates in model (1),
making b the most relevant exposure parameter.
Under the logistic model (1), the marginal

probability of the response in the ith family
requires multidimensional integration over the
random effects distribution, an operation that
cannot be carried out in closed form, and is
written as

PðYi1; . . . ;Yini jXi1; . . . ;XiniÞ

¼
Z

. . .

Z Yni
j¼1

p
yij
ij q

1�yij
ij dFða; gÞ; ð2Þ

where qij ¼ 1� pij.

ASCERTAINMENT CORRECTION

To account for the fact that the selected families
are not a random sample of families in the
population, but have at least two cases, the
likelihood function of the data should be
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conditioned on the ascertainment event. Let Yi: ¼Pni
j¼1 Yij denote the number of cases in the ith

family. Conditioning on the ascertainment event,
Yi: � 2; leads to the following likelihood for m
families in the sample:

where

Di ¼
X
l

expðbXilÞ
Z

l1il
Y

jal
l0ijðbÞdFða; gÞ

and

lYij ðbÞ ¼
expfYijðmþ saai þ sggijÞg

1þ expðmþ saai þ sggij þ bXijÞ
;

forY ¼0; 1:

ð4Þ

Note that the dimension of the integral in (3) is
ni þ 1, where ni is the length of the vector g and an
additional integral is added for the familial
random effect a.
An alternative approach to correct for ascertain-

ment, as used in Pfeiffer et al. [2001], is to
condition on a slightly stronger event, the exact
number Yi: of cases in a family. After integrating
over the unobserved random effects, the second
conditional likelihood function for m families is
the product

LðY1; . . . ;Ym;bÞ

¼
Ym
i¼1

PðYi1;Yi2; . . . ; Yini jXi1; . . . ; Xini ;Yi:Þ

¼
Ym
i¼1

Qni
j¼1 expðbYijXijÞ

Q
lYij ðbÞdFða; gÞPQni

l¼1 expðbYijXijÞ
Q

lYil ðbÞdFða; gÞ ð5Þ
where the summation is over all possible choices
of Yi: cases out of ni family members; see, for
example, Breslow and Day [1980]. For example, if

Yi: ¼ 2, there are niðni � 1Þ=2 summands, corre-
sponding to all choices of 2 cases out of the ni
family members.
If there is no residual correlation, i.e., gij ¼ 0 for

all i; j, model (1) reduces to the simpler logistic
model that assumes a family-specific intercept
mþ ai, and independence of the Yijs given ai:

logit ðpijÞ ¼ logitPðYij ¼ 1jm; ai;XijÞ
¼ mþ saai þ bXij: ð6Þ

In this model, conditioning on Yi: yields the
standard conditional likelihood

LðY1; . . . ; Ym; bÞ ¼
Ym
i¼1

Qni
j¼1 expðbYijXijÞQni
k¼1 expðbYikXikÞ

ð7Þ

that was studied, for example, by Kraft and
Thomas [2000] for sibship-based case control
studies.
Note that while (3) as well as (5) yield

asymptotically unbiased estimates of b, the like-
lihood (3) that is obtained by conditioning on Yi: �
2 contains more information on the parameters
than likelihood (5). In particular, if gij ¼ 0, the
parameters m and s2a cancel out the likelihood (5)
but not (3). Our simulations indicate that using (3)
will result in more efficient estimates of b, as well
as the intercept parameters, than using (5). O’Neill
and Barry [1995] found similar results on the
efficiency of conditioning for a logistic regression
model without random effects.
Conditioning on Yi: � 2 instead of on Yi: also

requires less computation, because the number of
terms in the summand in (5) grows exponentially
with family size, whereas the number of terms in
the denominator of (3) grows linearly.

SPECIFICATION OF RANDOM EFFECTS
DISTRIBUTIONS

Following Fisher [1918], we assume a polygenic
model in which the gijs are normally distributed,
and the covariance matrix can be represented as
the sum of an additive genetic variance and a
dominance variance. We further assume that the
gijs in (3) have only an additive component of
variance. The additive covariance matrix �i for
the ith family is a function of the degree of
kinship kðj; lÞ between members j and l in the
family:

covðgij; gilÞ ¼ ð�iÞj;l ¼ 2�kðj;lÞ: ð8Þ

For example, kðj; jÞ ¼ 0, and kðj; lÞ ¼ 1 if j and l are
first-degree relatives, e.g., siblings, and kðj; lÞ ¼ 2

LðY1; . . . ; Ym; bÞ

¼
Ym
i¼1

PðYi1;Yi2; . . . ; Yini jXi1; . . . ; Xini ;Yi: � 2Þ

¼
Ym
i¼1

PðYi1;Yi2; . . . ; Yini ;Yi: � 2jXi1; . . . ; XiniÞ
PðYi: � 2Þ

¼
Ym
i¼1

PðYi1;Yi2; . . . ; Yini jXi1; . . . ; XiniÞ
1� PðYi: � 1Þ

¼
Ym
i¼1

Qni
j¼1 expðbYijXijÞ

R Q
lYij ðbÞdFða; gÞ

1�
R Qni

l¼1 l
0
ilðbÞdFða; gÞ �Di

ð3Þ
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if j and l represent second-degree relatives, such as
a grandparent and a grandchild, or an aunt and a
nephew. Thus for each extra generation that
separates two members of a family, the correlation
is multiplied by a factor of 1=2. For unrelated
members of the family, such as spouses, kðj; lÞ ¼ 1
and ð�iÞj;l ¼ 0.
The random familial intercept ai is assumed to

arise from a standard normal distribution, and is
assumed to be independent of the gijs.

RESULTS

A SIMULATION STUDY

We use simulations to study the robustness of
the estimates of b based on the likelihood (3)
under the polygenic model with covariance (8)
when, in fact, the data derive from 1) a polygene
that incorporates both an additive and a dominant
covariance component, or 2) a single Mendelian
gene (dominant, recessive, or additive). We want
to stress that the main interest lies in estimating b,
and not the parameters of the random effects
distributions.
Each data set in the simulations consists of 100

families. For simplicity, we assume that all
families have the same size, ni ¼ 6, and the same
correlation structure: mother, father, and four
offspring, i.e., ð�iÞj;l ¼ 0 for j ¼ 1 and l ¼ 2, and
ð�iÞj;l ¼ 1=2 for all other j 6¼ l.
The true value of b is 1.0, and the univariate

covariate X is simulated from a Bernoulli dis-
tribution with probability parameter p ¼ 1=2.
Independently of X, the genetic liabilities g are
simulated, as described in more detail below.
Phenotypes were generated according to equation
(1), and families were included in the sample only
if Yi: � 2.
The parameters of the likelihood were estimated

by direct maximization. To evaluate the integrals
in the conditional likelihood function, we used
Monte Carlo integration with a Monte Carlo
sample size of N ¼ 5;000. To avoid convergence
problems with respect to m and s2a , we performed a
grid search on those two parameters. For further
details on the computations, see Pfeiffer et al.
[2001]. In addition to assessing the robustness of
model (3), we also estimate b based on standard
conditional logistic regression (7), that completely
ignores varying correlations between family mem-
bers. Estimates based on conditional logistic
regression are denoted by b̂bCLR, while b̂bRE stands
for the random effects model estimates. We let

�bbCLR represent the mean of the simulated esti-
mates b̂bCLR, and define �bbRE similarly. These
estimates and their standard errors (Tables I and
II) were based on at least 100 simulated data sets
for each condition examined. The mimimum
number of simulations was 114, and the maximum
was 148. The estimates b̂bRE and b̂bCLR converged in
every situation.
Genetic effects: polygenic with covariance

including a dominant component. The covariance
matrix of a polygenic random effects model that
allows for both an additive and a dominant
component depends on a second parameter, sd,
and is expressed as ð�Þj;j ¼ 1þ s2d=s

2
g, ð�Þj;l ¼

1=2þ s2d=ð4s2gÞ if j and l are siblings. Except for
sibling (including twin) pairs, the dominant
component of covariance occurs only when there
is inbreeding. For all other types of relatives,
ð�Þj;l ¼ 2�kðj;lÞ, where, again, kðj; lÞ denotes the
degree of kinship between members j and l in
the family. In this paper we do not consider
twinning or inbreeding.
Ignoring this dominant component of variance

can lead to biased estimates of b, and the bias is
more severe for b̂bCLR than for b̂bRE in all cases
studied (Table I). Nonetheless, even b̂bRE can be
substantially biased when s2d=s

2
g � 1. For m ¼

�5; s2g ¼ 1 and s2d ¼ 1, �bbRE ¼ 0:87, while
�bbCLR ¼ 0:83, and for m ¼ �3 with the same values
for s2g and s2d, �bbRE ¼ 0:88 and �bbCLR ¼ 0:82. When
s2dos2g, as for s2d ¼ 0:5 and s2g ¼ 1; we obtain for
m ¼ �5 an estimate of �bbRE ¼ 0:96, while �bbCLR ¼ 0:92
has an 8% bias. In the same situation for m ¼ �3, the
estimate �bbRE ¼ 0:98, while �bbCLR ¼ 0:91 shows a 9%
bias toward the null. When the magnitude of the
omitted variance component, s2d, is smaller than the
magnitude of the variance component in the model,
s2g, the effects on b̂bRE are less pronounced, as the
random effects model captures most of the correla-
tion present in the data. The larger the dominant
component is compared to s2g, the stronger the
impact of ignoring the dominant component is on
the bias of the regression estimates in the random
effects model. While the magnitude of m does not
influence b̂bRE, it does impact b̂bCLR. As noted by
Pfeiffer et al. [2001], the bias in b̂bCLR increases as m
gets closer to zero, namely in more common
diseases.
Not surprisingly, the coverage of confidence

intervals is below the nominal 95% level for all
situations that exhibit noticeable bias. The cover-
age of the likelihood ratio-based intervals for
the random effects model is always closer to the
nominal 95% level than the coverage of the
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confidence intervals from standard conditional
logistic regression estimates.
Because the dominance component only affects

sibling pairs (apart from the exceptions noted
above), the family structure we studied (two
parents and four offspring) poses a severe test of
robustness from omitting the dominant term.
Families with relatives with varying degrees of
kinship would likely yield less biased estimates
for b̂bRE than indicated in Table I.

Genetic effects: Mendelian. Here, we study
bias in b̂bRE that results when an additive polygenic
model is fit to data in which genetic correlations
are induced by a single biallelic gene.
Let d denote the wild-type allele, and D the

disease-associated allele. Let Dij ¼ 0; 1; 2 denote
the number of alleles D that individual ij is
carrying. To simulate the data, the score functions
gij ¼ gðDijÞ in model (1) are defined as follows for
various genetic models. For the dominant model,
gij ¼ gðDijÞ ¼ 1 for Dij ¼ 1; 2, and 0 otherwise. For
a recessive model, gðDijÞ ¼ 1 for Dij ¼ 2, and 0
otherwise. For the additive model on the logit
scale, gðDijÞ ¼ 1 for Dij ¼ 2, 1=2 for Dij ¼ 1, and 0
for Dij ¼ 0: The allele frequencies used for the
simulations presented in Table 2 are p ¼ 0:01 for
the dominant model and p ¼ 0:1 for the recessive
model to reflect moderate gene frequencies, and
p ¼ 0:05 for the dominant model and p ¼ 0:25 for
the recessive model to assess the case of a more
prevalent genetic disease component. To generate
genotypes for a random family, we first select the
parental genotypes at random from the general
population assuming Hardy-Weinberg equili-

brium, and then generate the genotypes for the
offspring assuming Mendelian transmission.
Other features of the simulations are the same as
described previously for polygenes.
The values of m; sa; sg, and p in Table II were

chosen to reflect plausible levels of genetic risk for
NPC. Setting b ¼ 0 in (1), we can calculate the
attributable risk and penetrances for Mendelian
models (Appendix). Note that sg in this model
denotes the change in log relative odds for a unit
change in g, and s2g no longer represents the
variance of genetic effects, which is instead s2g
Var(gÞ. For m ¼ �5;sa ¼ 1, sg ¼ 1, and a dominant
gene with allele frequency p ¼ 0:01; the attribu-
table risk is 3.1%, the penetrance for a noncarrier
is 1%, and the penetrance for a carrier is 2.9%. If
the allele frequency is changed to p ¼ 0:05, then
the attributable risk increases to 13.5%. For
m ¼ �5;sa ¼ 1, sg ¼ 2, and a dominant gene with
allele frequency p ¼ 0:01, the penetrance for a
noncarrier is 1%, and the penetrance for a carrier
increases to 7.0%. The attributable risk in this
situation is 5.4%. When m changes to �3, the
attributable risk is 2.4% for p ¼ 0:01, while it is
10.82% when p ¼ 0:05. The penetrance for a
noncarrier in this setting is 7%, and the penetrance
for a carrier is 15.7%.
Table II summarizes the simulations. We first

discuss dominant models. In the rare disease case
where sg ¼ 1:0 and m ¼ �5, standard conditional
logistic regression yields nearly unbiased esti-
mates of �bbCLR ¼ 0:99 [see Pfeiffer et al., 2001],
while the estimate based on the random effects
model is �bbRE ¼ 1:01. Even for the intercept of

TABLE I. Results for estimation of b when data are simulated from polygenes having additive and dominant covariance
components, while the random effects analysis model assumes only an additive componenta

Random effects model CLR

Simulation parameters
m, sa

2, sg
2, sd

2
Mean estimates
�mm, �ss2a , �bbRE, �ss

2
g

CI coverageb for bRE Mean bCLR CI coverageb for bCLR

�5, 1.0, 1.0, 1.0 �4.37, 0.85, 0.87, 0.86 0.86 0.83 0.79
(1.25, 0.96, 0.20, 0.95) (0.19)

�5, 1.0, 1.0, 0.5 �4.43, 0.78, 0.96, 0.86 0.95 0.92 0.95
(1.22, 0.90, 0.19, 0.89) (0.17)

�5, 1.0, 1.5, 0.5 �4.44, 0.81, 0.97, 1.31 0.96 0.90 0.93
(1.20, 0.88, 0.18, 1.20) (0.16)

�3, 1.0, 1.0, 1.0 �2.83, 0.91, 0.88, 1.02 0.83 0.82 0.80
(1.06, 0.99, 0.20, 1.19) (0.16)

�3, 1.0, 1.0, 0.5 �2.89, 0.93, 0.98, 1.01 0.92 0.91 0.90
(1.10, 1.05, 0.21, 1.24) (0.18)

�3, 1.0, 1.5, 0.5 �3.12, 1.20, 0.93, 1.41 0.85 0.83 0.81
(1.20, 1.22, 0.22, 1.38) (0.17)

aThe empirical standard errors are given the line below the estimates.
bCoverage for nominal 95% confidence interval for b. A test-based confidence interval derived from the likelihood ratio statistic was used.
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m ¼ �3, both fixed-effects parameters are nearly
unbiased, with �bbRE ¼ 1:04 and �bbCLR ¼ 1:00. For
m ¼ �5 and sg ¼ 2:0, the conditional logistic
regression estimate �bbCLR ¼ 0:96 is slightly smaller
than �bbRE ¼ 0:99. For m ¼ �3 and sg ¼ 2:0, the rare
disease assumption is violated, and the condi-
tional logistic regression estimate, �bbCLR ¼ 0:95
shows a 5% bias, whereas �bbRE ¼ 1:02. When
p ¼ 0:05, there is no bias for m ¼ �5 and sg ¼ 1,
but when m ¼ �3, �bbCLR ¼ 0:96 shows a small bias
that is not seen for p ¼ 0:01. When m ¼ �5,
p ¼ 0:05, and sg ¼ 5:5, a parameter setting that
corresponds to 60%c regression estimate �bbCLR ¼
0:96 is slightly smaller than �bbRE ¼ 0:99. For m ¼ �3
and sg ¼ 2:0, the rare disease assumption is
violated, and the conditional logistic regression
estimate, �bbCLR ¼ 0:95 shows a 5% bias, whereas
�bbRE ¼ 1:02. When p ¼ 0:05, there is no bias for m ¼

�5 and sg ¼ 1, but when m ¼ �3, �bbCLR ¼ 0:96
shows a small bias that is not seen for p ¼ 0:01.
When m ¼ �5, p ¼ 0:05, and sg ¼ 5:5, a parameter
setting that corresponds to 60% penetrance for gene
carriers, �bbRE ¼ 0:94 exhibits a small bias, while
�bbCLR ¼ 0:48 shows a 52% bias, due to the strong
influence of the omitted genetic component.
Slightly different patterns for bias are seen in

the recessive model. With an allele frequency of
p ¼ 0:1, all parameter settings result in virtually
unbiased estimates of b for both models. Even
when the allele frequency is increased to p ¼ 0:25,
we see very little bias for m ¼ �5; sg ¼ 1; as
�bbCLR ¼ 0:97.
For the additive model we see a small bias even

for sg ¼ 1 and m ¼ �5 for conditional logistic
regression, �bbCLR ¼ 0:98, while �bbRE is unbiased. In
all situations the bias is less than 3%, however.

TABLE II. Results for estimation of b when data are simulated from a biallelic single gene model, with empirical
standard errors given on line below estimates

Random effects model CLR

Simulation model and parameters m; sa;sg; p Mean estimates �mm; �ss2a ; �bbRE; �ss
2
g CI coveragea for bRE Mean �bbCLR CI coveragea for bCLR

Dominant: �5, 1.0, 1.0, .01 �4.33, 0.49, 1.01, 0.38 0.95 0.99 0.96
(1.18, 0.64, 0.18, 0.57) (0.18)

Dominant: �5, 1.0, 1.0, .05 �4.59, 0.64, 1.03, 0.50 0.97 1.01 0.98
(1.22, 0.75, 0.16, 0.66) (0.16)

Dominant: �5, 1.0, 5.5, .05 �4.88, 0.57, 0.94, 14.44 0.93 0.48 0.26
(1.50, 1.12, 0.38, 9.52) (0.17)

Dominant: �3, 1.0, 1.0, .01 �3.29, 1.06, 1.04, 0.49 0.93 1.00 0.94
(1.04, 0.91, 0.19, 0.49) (0.11)

Dominant: �3, 1.0, 1.0, .05 �3.16, 1.04, 1.00, 0.51 0.95 0.96 0.95
(1.17, 0.97, 0.19, 0.75) (0.18)

Dominant: �5, 1.0, 2.0, .01 �4.52, 0.61, 0.99, 0.22 0.94 0.96 0.97
(1.24, 0.69, 0.18, 0.72) (0.17)

Dominant: �3, 1.0, 2.0, .01 �3.23, 0.89, 1.02, 0.84 0.97 0.95 0.98
(1.09, 0.88, 0.19, 1.13) (0.16)

Recessive: �5, 1.0, 1.0, 0.1 �4.63, 0.63, 1.04, 0.44 0.90 1.01 0.91
(1.32, 0.69, 0.22, 0.63) (0.21)

Recessive: �5, 1.0, 1.0, 0.25 �4.60, 0.58, 1.00, 0.43 0.95 0.98 0.97
(1.19, 0.70, 0.18, 0.59) (0.18)

Recessive: �5, 1.0, 2.0, 0.1 �4.72, 0.71, 1.08, 0.41 0.94 1.00 0.98
(1.34, 0.81, 0.19, 0.54) (0.18)

Recessive: �3, 1.0, 1.0, 0.1 �3.37, 1.09, 1.04, 0.43 0.95 1.01 0.94
(1.16, 0.94, 0.20, 0.69) (0.18)

Recessive: �3, 1.0, 1.0, 0.25 �3.25, 0.99, 1.04, 0.54 0.94 1.00 0.97
(1.18, 0.98, 0.19, 0.80) (0.18)

Recessive: �3, 1.0, 2.0, 0.1 �3.27, 1.00, 1.01, 0.54, 0.92 0.97 0.97
(1.16, 0.91, 0.19, 0.92) (0.18)

Additive: �5, 1.0, 1.0, 0.1 �4.74, 0.65, 1.00, 0.11 0.91 0.98 0.94
(1.35, 0.77, 0.19, 0.59) (0.19)

Additive: �5, 1.0, 2.0, 0.1 �4.59, 0.74, 1.02, 0.57 0.96 0.99 0.94
(1.39, 0.83, 0.18, 0.66) (0.17)

Additive: �3, 1.0, 1.0, 0.1 �3.38, 1.18, 1.03, 0.57 0.93 0.98 0.97
(1.16, 1.01, 0.19, 0.83) (0.16)

Additive: �3, 1.0, 2.0, 0.1 �3.11, 1.05, 1.02, 0.67 0.91 0.97 0.99
(1.10, 0.98, 0.22, 1.00) (0.19)

aCoverage for nominal 95% confidence interval for B. A test-based confidence interval derived from the likelihood ratio statistic was used.
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The robustness of the estimates in the dominant
setting is not surprising, and can be explained as
follows. For a dominant trait, Pðgij ¼ 1Þ ¼ pð2� pÞ
and VarðgijÞ ¼ pð2� pÞð1� pÞ2. The correlation
between a parent and a child is given by
ð1� pÞ=ð2� pÞ, and the correlation between sib-
lings is ð4� 3pÞ=ð8� 4pÞ [Elandt-Johnson, 1971].
For p close to zero, both correlations are nearly
1=2. The correlation structure for a pedigree for a
dominant gene with small p is thus close to the
correlation structure of an additive polygenic trait.
For a recessive trait, Pðgij ¼ 1Þ ¼ p2, and
VarðgijÞ ¼ p2ð1þ pÞq [Elandt-Johnson, 1971]. Here
the correlation between a parent and a child is
given by p=ð1þ pÞ, and the correlation between
siblings is ð1þ pÞ=ð4� 4pÞ. For p close to zero, the
first correlation is close to zero, while the second
one is close to 1=4. The fact that in the recessive
case our additive correlation structure does not fit
the data as well as in the dominant case may be the
reason that in the recessive case, the random effects
model tends to slightly overestimate the true b.
We also estimate m and s2a with reasonable

accuracy, especially when the disease is less rare,
even though those two parameter estimates were
obtained via a crude grid search. For example,

when m ¼ �3, s2a ¼ 1, and sg ¼ 1, we obtain �mm ¼
�3:29 and �ss2a ¼ 1:06 when p ¼ 0:01, and �mm ¼ �3:16
and �ss2a ¼ 1:04 when p ¼ 0:05 in the dominant
model. When the disease is rare, m ¼ �5, the
intercept parameters m and s2a are understimated
for all settings. For example, in the dominant case
with p ¼ 0:05 and sg ¼ 1, �mm ¼ �4:59 and �ss2a ¼ 0:64.
For results for the other parameter settings, see
Table 2. Thus, even though we only observe a
highly selected sample of families from the
population, the random effects model provides
insight into the population prevalence of the
disease, whereas conditional logistic regression
does not.
The distribution of estimates of s2g for a

dominant trait with m ¼ �5, sg ¼ 1, and p ¼ 0:05
is skewed to the right, and 60% of the estimates of
s2g are zero (Fig. 1). The median estimate of s2g,
0.22, was less than the mean estimate, 0.5. We
observed similar skewness for each of the simula-
tions in Table II. For example, for a recessive trait
with m ¼ �5, s2g ¼ 1, and p ¼ 0:25, the median was
0.17, while the mean was 0.43. It is evident from
histograms such as in Figure 1 that estimates of s2g
will often be zero for almost all situations tested in
Table II and provide no evidence for a genetic
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Fig. 1. Histogram of estimates ŝsg for m ¼ �5, s2a ¼ 1:0, s2g ¼ 1, and p ¼ 0:05.
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random effect. This is not surprising because, as
mentioned above, s2gVarðgÞ is typically small for
Mendelian traits. When the data arose from a
dominant gene with allele frequency p¼0.05 and
sg ¼ 5:5, the mean of the estimates for sg was 14.44
(excluding one simulation in which ŝsg tended to
infinity), and the median estimate was 11.54.
The overall conclusion from the simulation

study in Table II is that using the additive
covariance structure and normally distributed
random effects yields reliable estimates of the
fixed-effects parameters b̂bRE, even when the true
underlying genetic distribution is discrete and
arises from a single gene. The estimator b̂bCLR also
performs well for small or moderate allele
frequencies and penetrances in Table II.

DATA EXAMPLE: NPC STUDY

We fitted the two-level random effects model
and conditional logistic regression to a subset of
NPC data. We studied the effects of sex, age, and
the strongest risk factor for NPC, Epstein-Barr
seropositivity, on disease risk. Different families
required the use of different covariance matrices.
These covariance matrices were found using Proc
Inbreed, SAS 8.0 [SAS Institute, Inc., 1999].
The covariates we considered were a gender

indicator, X1 ¼ 1 for male and 0 for female, and
two age-group indicators, X2 ¼ 1 for age 46–57
years, X2 ¼ 0 otherwise, and X3 ¼ 1 for age 457
years, X3 ¼ 0 otherwise. The � 46-year age-group
was the reference group. Age refers to age at
diagnosis for cases, and age at interview for
controls. X4 denotes the indicator for Epstein-Barr
virus (EBV) seropositivity, defined as an antibody-
positive test against one or more of the following
four EBV antigens: VCA IgA, EBNA1 IgA, Anti-
DNAse, and TK IgA [Connolly, 2001; Hildesheim
et al., 2001]. We had to limit our analysis to
families in which at least two cases had measure-
ments on EBV exposure. Subjects without EBV
status were excluded from the analysis. The
problem of missing data affects both the random
effects model analysis and the conditional logistic
regression analysis. Imputation methods to ad-
dress missing data would need to be used with
caution in our example, because missing values
are more likely to occur in older and diseased
cases, from whom serum samples could not be
obtained. We therefore based our analysis on data
from the 38 families with at least two cases with
EBV measurements and with a total of 385
subjects. The family sizes ranged from 2–22. Three

families had three, and 35 families had two
affected members. The estimates and their stan-
dard errors are given in Table III.
The two-level random effects model yielded the

log odds estimates 0.99 for men, 1.28 for the 46–57-
year age group, and 0.75 for the oldest age group.
The estimate of random effects variance was
ŝs2g ¼ 0:00, with a standard error of 0.001. The
estimates based on conditional logistic regression
were very similar, with log odds of 0.94 for men,
1.22 for the 46–57-year age group, and 0.74 for the
oldest age group. These findings are consistent
with earlier work demonstrating lower risk in
women and elevated risk in the 46–57-year age
group in Taiwan [Hildesheim and Levine, 1993].
The estimate b̂bCLR for EBV exposure was 1.74, in
perfect agreement with the estimate b̂bRE.
Note that even though the random effects

model fits more parameters than conditional
logistic regression, it yields smaller standard
errors for the b estimates. This may result from
the fact that the ascertainment correction used in
the random effects model is less stringent (and
therefore more realistic), and thus the likelihood
contains more information than the conditional
logistic regression likelihood.

DISCUSSION

We assessed the robustness of a two-level
random effects model for binary disease outcomes
in family data that corrects for ascertainment and
includes measured covariates as well as random
genetic effects that are modeled as polygenes with
an additive covariance structure. We were inter-
ested in the sensitivity of estimates of the fixed-
effects parameters to misspecifications of distri-
bution of underlying genetic liability. In related
work, Neuhaus et al. [1992] considered misspeci-
fied mixing distributions in logistic-normal mod-
els and found that, although regression estimates
are asymptotically biased, the magnitude of the

TABLE III. Results for estimation of b and s2g for 38 NPC
families, with standard errors in parentheses

Parameter Two-level random
effects model

Conditional logistic
regression (CLR)

Male indicator 0.99 (0.31) 0.94 (0.31)
Age 46–57 1.28 (0.26) 1.22 (0.37)
Age 457 0.75 (0.38) 0.74 (0.38)
Epstein Barr 1.74 (0.34) 1.74 (0.38)
s2g 0.00004 (0.001) NA
Log likelihood �115.62 �132.26
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bias is typically small. In support of the conclu-
sions of Neuhaus et al. [1992], Heagerty and
Kurland [2001] found that a marginally specified
regression structure that is estimated by max-
imum likelihood is generally not very susceptible
to bias resulting from misspecifications of the
mixing distribution. Incorrect modeling of ran-
dom effects in nonlinear mixed models that are
not in the class of generalized linear models can
have a big impact on the estimates of parameters
[Hartford and Davidian, 2000]. Our ascertain-
ment-corrected likelihood does not fall into the
framework studied by Neuhaus et al. [1992],
Heagerty and Kurland [2001], or Hartford and
Davidian [2000].
We simulated the liability from a polygenic

model that included a dominant as well as an
additive genetic variance component. When the
magnitude of the dominant component was less
than the magnitude of the additive effect, the bias
in the fixed-effects parameters was small. We also
studied genetic random effects arising from
Mendelian models. When the allele frequencies
were small, chosen to reflect the allele frequencies
that were expected for nasopharyngeal carcinoma,
the model estimates were completely robust to the
misspecification. As the allele frequencies in-
creased, a small bias could be detected, but in all
situations, even including a dominant model with
60% penetrance, the bias was less than 6%. Thus,
modeling gij as a polygene with additive covar-
iance yields robust estimates of b.
For comparison, we estimated the fixed-effects

parameters using standard conditional logistic
regression, that completely ignores genetic corre-
lations, and treats each family as a matched set by
conditioning on the number of cases in the family.
Estimates of the fixed effects based on the simpler
model exhibited a stronger bias when the genetic
liability was a polygene with a dominant and
additive component than the estimates based on
the random effects model. As reported by Pfeiffer
et al. [2001], conditional logistic regression also
leads to estimates of b biased toward zero in the
presence of a polygene with additive covariance
only. In the Mendelian setting with low allele
frequencies and moderate penetrance, the perfor-
mance of both models was similiar with regard to
bias of the estimates of fixed effects. In one
example of a dominant model with 60% pene-
trance, however, b̂bCLR was downwardly biased by
52%, whereas b̂bRE had only a 6% bias.
An advantage of conditional logistic regression is

that the bias is known to be towards the null

[Pfeiffer et al., 2001], while the estimates based on
the random effects model may overestimate the
magnitude of the fixed effects slightly, as in the case
of a Mendelian gene, or underestimate the magni-
tude of fixed effects, as in the case of a polygene
with an additive and a dominant component.
We applied the random effects model and

conditional logistic regression to a subset of 38
families from the NPC study, to estimate the
effects of age, gender, and exposure to Epstein-
Barr virus. The magnitude of random effects
variance was estimated to be zero, and the
estimates of covariate effects were very similar
for the two models. This is not surprising, as the
simulations showed that our model might fail to
detect an effect of a single gene with low allele
frequency and penetrance. An indication in the
NPC data that this might be a plausible genetic
mechanism is the fact that most families in the
study have exactly two affected members, and
only very few have more than three cases, as
might be expected for a highly penetrant gene
[e.g., Bishop, 1999]. Pfeiffer et al. [2001] showed
that if genetic random effects are omitted, the
estimates of fixed effects from conditional logistic
regression are biased toward the null. As the
estimates b̂bRE and b̂bCLR are virtually identical in
the NPC data, and the magnitude of the random
effects is estimated to be zero, we conclude that
conditional logistic regression using standard
software, such as Proc Phreg, SAS 8.0 [SAS
Institutes, inc.,1999], would yield valid estimates
of exposure effects for these data and is compu-
tationally simpler than the random effects model.
In some applications it may be useful to

decompose the effect of an individual level
covariate Xij into two components, Xi: and
Xij � Xi:, in order to estimate ‘‘between’’- and
‘‘within’’- cluster exposure effects [Neuhaus and
Kalbfleisch, 1998]. In the absence of genetic
correlations, CLR estimates the within-cluster
effect. In principle it should be possible to
estimate both components from the random
effects model with data ascertained as in our
study, because the likelihood contains some, if
little, information on the intercept parameters.
When we used the between- and within-family
parameterization for Epstein-Barr virus exposure
in our data example of 38 NPC families, however,
the maximization algorithm did not converge. A
larger data set might provide adequate informa-
tion to estimate both components.
It might be worth exploring the use of regres-

sive logistic models [Bonney, 1986] to account for
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familial correlations, provided a suitable ascer-
tainment correction is available. The interpretation
of b in these models depends on family structure
and size, however, unlike model (1).
In conclusion, if the disease of interest is rare

and includes an unmeasured genetic component
that is small or, in the case of a single gene, has
low allele frequency and low penetrance, then
treating the family members as independent
within a given family and relying on conditional
logistic regression will result in nearly unbiased
estimates of the fixed-effects parameters. If the
disease of interest is less rare, and is based on
polygenic effects of moderate size, or if a highly
penetrant autosomal-dominant gene is present,
then using the random effects model is preferable
to the conditional logistic analysis, and the esti-
mates of fixed effects will be robust to misspeci-
fications of the underlying genetic mechanism.

APPENDIX

In the absence of covariates, i.e., b ¼ 0, model (1)
reduces to logitPðYij ¼ 1jai; gijÞ ¼ mþ saai þ sggij:
The prevalence of disease in the population is
given by

PðYij ¼ 1Þ ¼
Z
a

Z
g
PðYij ¼ 1jai; gijÞdFðaÞdFðgÞ:

When the genetic component is Mendelian, the
integration with respect to the distribution of g is
replaced by a summation over the appropriate
genotypes. Recall that Dij ¼ 0; 1; 2 denotes the
number of alleles D with allele frequency p that
an individual is carrying. For a dominant trait, the
score function gðDijÞ ¼ 1 for Dij ¼ 2 or Dij ¼ 1, and
0 otherwise. The overall disease probability for the
dominant model is

PðYij ¼ 1Þ ¼
Z
a
PðYij ¼ 1jai; gij ¼ 1Þðp2 þ 2pð1� pÞÞ

þPðYij ¼ 1jai; gij ¼0Þð1� pÞ2dFðaÞ;
the baseline penetrance for a given set of
parameters is

R
a PðYij ¼ 1jai; gij ¼ 0ÞdFðaÞ, and the

penetrance for a carrier is
R
a PðYij ¼ 1jai; gij ¼

1ÞdFðaÞ: The population attributable risk is

where q ¼ 1� p. The calculations are similar for
additive and recessive traits.
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R
PðYij ¼ 1jai; gij ¼ 0ÞdFðaÞ

ðp2 þ 2pqÞ
R
PðYij ¼ 1jai; gij ¼ 1ÞdFðaÞ þ ð1� pÞ2

R
PðYij ¼ 1jai; gij ¼ 0ÞdFðaÞ
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