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SuMMARY. In the 1940s and 1950s, over 20,000 children in Israel were treated for tinea capitis (scalp

ringworm) by irradiation to induce epilation. Follow-up studies showed that the radiation exposure was |
associated with the development of malignant thyroid neoplasms. Despite this clear evidence of an effect,
the magnitude of the dose-response relationship is much less clear because of probable errors in individual
estimates of dose to the thyroid gland. Such errors have the potential to bias dose-response estimation, a
potential that was not widely appreciated at the time of the original analyses. We revisit this issue, describing
in detail how errors in dosimetry might occur, and we develop a new dose-response model that takes the
uncertainties of the dosimetry into account. Our model for the uncertainty in dosimetry is a complex and
new variant of the classical multiplicative Berkson error model, having components of classical multiplicative |
mesasurement error as well as missing data. Analysis of the tinea capitis data suggests that measurement .‘
error in the dosimetry has only a negligible effect on dose-response estimation and inference as well as on ‘

the modifying effect of age at exposure.
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1. Introduction

Studies of the late effects of irradiation on a cohort of nearly
11,000 of the Israeli children irradiated for tinea capitis
(scalp ringworm) showed an- increasing risk of thyroid can-
cer associated with increasing dose of radiation to the thy-
roid gland (Modan, Ron, and Werner, 1977; Ron et al., 1989,
1995). The presence of an association has also been found in
other studies on different populations (see Ron et al., 1995),
but the surprising steepness of the dose-response relationship
from the tinea capitis study has been called into question,
particularly in light of the inaccuracies in the individual esti-
mated doses. We reanalyzed the data to estimate relative risk
models, this time accounting for uncertainties in thyroid ra-
diation dose. The main epidemiological result is that the con-
clusions did not change appreciably. This article is concerned
with the statistical approach and issues associated with ad-
justment for dose uncertainty in this problem.

The approach is necessarily customized to the particular

intricacies of this data problem. It is the illustration of the
customization and the handling of departures from ideal sit-
uations that we believe are instructive. The most important
component is the correct modeling of the multiple sources of
dose uncertainty, especially the correct determination of un-
certainties as classical measurement errors or Berkson errors.
Of some statistical novelty is the use of a model that incor-
porates external prediction data, meaning data from a sep-
arate study that is used to formulate and estimate a model
for predicting dose from predictor variables. This results in a
Berkson uncertainty from using an expected dose in place of
an individual's actual dose and, additionally, a classical un-
certainty due to the sampling error in estimating unknown
coefficients in the prediction model. ’

The gist of our statistical methodology is likelihood analy-
sis for an induced hazard function given the available vari-
ables for predicting dose using both the primary data set
and the secondary external prediction data set. Sensitivity
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analyses were used to explore the consequences of inaccura-
cies in the parts of the input that were necessarily subjective.
Related work on statistical tools for inference from censored
survival times in the presence of covariate measurement error
includes Pepe, Self, and Prentice (1989), Pierce, Stram, and
Vaeth (1990), Pierce et al. (1992), Nakamura (1992), Hughes
(1993), Thomas, Stram, and Dwyer (1993), Lubin, Boice, and
Samet (1995), Hu, Tsiatis, and Davidian (1998), and Ron and
Hoffman (1999).

The implementation is clouded by problems of missing data
different types of dose predictors for different subjects, dif-
ferent degrees of dose uncertainty for different subjects, and
sources of dose uncertainty that require subjective assessment.
Section 2 presents the basic statistical approach in general
terms, stripped of the complicating features. Section 3 de-
tails the information available for dosimetry and the statis-
tical models used to incorporate the uncertainty. Section 4

" puts the pieces from Sections 2 and 3 together and illustrates

the computational form of the analysis. The numerical re-
sults, including sensitivity analyses, are discussed in Section
5. Section 6 gives concluding remarks.

2. Overview of the Statistical Modeling and Analysis
2.1 A Model of Interest for the Hazard Function

The study population consists of 10,834 children who received
x-ray therapy between 1948 and 1960, 10,834 nonirradiated
population-matched controls, and 5392 nonirradiated tinea-
free siblings. The rates of malignant thyroid tumors by 1986
were 4.0 per 1000 persons in the irradiated subjects and 1.0
per 1000 persons in the nonirradiated subjects.

Let T be a random variable representing the elapsed time
after entry into the study until onset of thyroid cancer.
Of interest in this article is inference about models of the
following form for the age-specific thyroid cancer rate (hazard
function of T') as a. function of total radiation dose to the
thyroid, D, and additional covariates, X:

h(t| X, D, B)
= exp {X{f,(t)ﬂbr} [1 + Dexp {ﬁdr + X;fm(t)ﬁem}] :
(1)

In 1), X = X(¢) = (Xbr, Xem), where Xy, is a vector of
those covariates associated with background rate (hence br),
such as time since exposure, sex, attained age, and place of
origin. Let Xem be a vector of those covariates that modify the
radiation dose-response, i.e., effect modifiers (hence em) such
as sex and age at exposure. In what follows, we will suppress
the notational dependence of X on t. The parameters B =
(Bur, Bem, Bar) are associated with (Xyp;, Xem, D), and hence
control background rate, effect modifiers, and dose response
(hence dr). Model (1) is commonly used for carcinogenic
effects of low doses of radiation, supported on both theoretlcal
and empirical grounds (Ron et al., 1995).

To make inferences, Ron et al. (1989, 1995) treated the
responses of the irradiated subjects as independent of those
of the controls, i.e., they ignored the matching of irradiated
subjects with their nonirradiated, matched controls and with
their nonirradiated siblings. Ignoring the first dependence is
justified by the use of the matching variables (age, sex, and
place of origin) as covariates in the model. Ignoring the second

is not so justified, but since there were only six nonirradiated
siblings who developed thyroid cancer, none of whom had a
corresponding irradiated sibling who also developed thyroid
cancer, it is unlikely that correctly accounting for sibling
dependence, which would greatly complicate the analysis,
will make any difference. We therefore will also proceed as
if responses of all subjects, conditional on dose and other
covariates, are mutually independent.

If the available doses are treated as exact, then standard
techniques for relative risk regression from censored survival
times, such as partial likelihood analysis of Cox regression
models or likelihood analysis based on the Poisson subject-
years method, could be used to make inferences about B in (1)
(cf., Breslow et al., 1983). If interest is in the regression on true
dose, though, biases may result in estimates of B from using
the imprecise estimates of true dose (cf., Carroll, Rupert, and
Stefanski, 1995).

Postponing the details of the dosimetry until the next
section, we shall describe our statistical approach that
accounts for dose uncertainty in general terms now. Let W be
a vector of variables that are available for predicting a child’s
total thyroid dose. For now, think of these as number of x-
ray treatments received, type of x-ray machine used on each
application, machine settings on each application, and age of
the child on each application. The dose estimates used in the
original analyses of the tinea capitis subjects were obtained,
essentially, by applying a formula for predicting dose from
W. The formula was based on results from phantom studies
(in which anthropomorphic phantoms, with dosimeters placed
at the “thyroid,” are exposed to x-rays). Our procedure
considers the induced hazard function of T conditional on
the observable variables W and X.

2.2 Induced Hazard Function

Assume that T and W are conditionally independent, given
X and D, i.e.,

h(t‘D7X,W’B)=h(t|DaX’B)a (2)

which means that, given true dose and X, time to thyroid
cancer is independent of the dose-predictor variables. Then,
as shown in the Appendix,

ht| X,W,B,0)=E{h(t| D, X,B)| T >t,X,W,0}, (3

where © represents the unknown parameters in the distribu-
tion of D given X and W. Prentice (1982) showed this to be
true for the special case that W is a univariate measurement
of D. In our setting, W is a vector of dose-predictor variables.

Since the risk of disease is small, the approximation to (3)
obtained by dropping the condition T' > ¢ should be adequate
(as discussed in Pepe et al., 1989), in which case, the hazard
based on the observable covariates X and W is

h(t| X,W,B,0) = E{h(t| D, X,B) | X,W, 6}
=h{t|E(D|X,W,6),X,B},

where the last equality holds because the assumed hazard
function is linear in dose. Thus, the parameters of interest
are in the hazard function given the observable variables,

h(t| X, W, B,©)
= exp (X3 (t)6or )
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X [1 +E(D | X,W,0)exp {,Hdr + X;rm(t)ﬂem}] .
(4)

If, e.g., © is known and E(D | X, W, ©) can be calculated
for each subject in the tinea study group, then parameters
may be estimated with standard methods but with unknown
doses replaced by their expectations given X and W. In
general, the technique of using usual methods but with the
unknown doses replaced by their expectations given available
variables is known as regression calibration (Carroll et al.,
1995).

If © were known, then the parameters in the relative
risk portion of (4), i.e., the part in brackets, could be
estimated either by the partial likelihood analysis of the Cox
regression model or by the subject-years method, which is
based on Poisson likelihood calculations of cancer occurrences
tabulated over intervals of time after entry into the study.
We shall focus on the latter because we wish to use an
exact likelihood function. In that way, we can combine the
likelihood associated with the tinea subjects with the like-
lihood associated with the phantom studies in order to
simultaneously estimate B (the parameters in the relative risk
regression) and © (the parameters in the model for predicting
dose from the dose predictor variables). Inferences about B
will automatically account for the uncertainty in estimating
© without any need for ad hoc adjustments.

2.3 The Combined Likelihood Function

The density function for T; for the ith member of the tinea
study group is

f(t|Dle,X1,B,®)

t
- h(t | D?,X,-,B) exp{—/ h(u | D?,Xi,B) du},
0

where D? is an abbreviation for E(D; | X;,W;,©) and
h{t | Die , X;,B) is the hazard function in (4) (cf., Cox and
Oakes, 1984, Section 2.2). Assuming independence, the log-
likelihood function from the tinea subjects is given by

finea(B,0) = Y [w tog { (: | D, X, ) }
S;
—/ h(u|D?,X,-,B)du ,
0

k2
where v; is an indicator variable for uncensored observations
and S; is the minimum of T; and the censoring time (Cox and
Oakes, 1984, Section 3.2).

The subject-years or Poisson approach offers relatively
simple calculations by tabulation according to various
states that the subjects pass through during the course of
observation.” For a given fixed value of ©, the tinea data
may be cross-classified according to J states formed by all
combinations of various categories of time since exposure and
explanatory variables such as sex, country of origin, expected
dose, and age at first exposure. With the inconsequential
assumption that the covariables (X, De) take on constant

-

values within states, the log likelihood reduces to

Ciinea (B, ©) = EJ: (05108 {n (¢105,%;,8) }

=1
- (t108.%,8) B, 9

where O; is the observed number of cancers and E; is
the person-years of observation in state j (see Breslow et
al., 1983). The actual value used for Dje for a given © is
the person-years weighted average of expected dose for all
individuals 7 observed in state j.

One approach is to estimate © from the phantom data,
then treat it as known for maximum likelihood estimation of B
from (5). We call this regression calibration. In this, however,

the covariate D_? is an imprecise estimate of the explanatory

variable of interest, D?. Writing D? = DJQ + €5, where
€; represents the imprecision due to sampling variability in
estimating ©, it is evident that classical measurement error is
present. Note, however, that cov(e;, €;) # 0 because the error
component 6 — © is common to all values.

Alternatively, we may combine the tinea likelihood with the
likelihood from the phantom studies and maximize them with
respect to (B, ©) jointly. We call this calibrated likelihood.
Let Zphantom(©) represent the log-likelihood function from
the phantom study. The combined log likelihood is therefore

écombined (B, @)
J
[oj log {h(t | D, X;, B)}

= ephantom(e) +
j=1

J
—h(t] D?,X,-,B)E,-]. 6)

This seems awkward in that the states j are defined for an
unknown value of ©. Using a Fisher scoring algorithm for
maximization, however, it turns out that the tabulations only
need to be formed for current estimates of © at each iteration.

3. Modeling the Radiation Dose Uncertainties
3.1 Introduction

To use the likelihood function in (6), we need an expression for
De, i.e., a model for expected dose given the observable dose
predictor variables and other covariates. Here we describe the
available variables for the tinea capitis subjects for predic-
ting their dose and the phantom experiments and physical
considerations that are used to translate these predictor
variables into a dose determination. We shall give a rough
explanation of the process in this introduction and then
provide more details and specific models in Sections 3.2 and
3.3.

The phantoms in the phantom experiments were artificial
heads and torsos constructed from actual skeletal bone and
artificial soft tissue. These were submitted to x-ray exposures
using similar machines and a variety of qualitative and
quantitative characteristics that matched some of the x-ray
prescriptions actually used on the children in Israel.

It is convenient to let V represent the vector of dose-
predictor variables that would really be needed in order to
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make direct use of the phantom study results for predicting
dose, and to let W represent the dose-predictor variables that
are actually available in the existing database. The point of
this notational distinction is that W contains variables that
are incomplete or in some way proxies for V.

Specifically, the components of V are the number of x-
ray applications (between one and four, since some children
needed more than one administration due to reoccurrence
of ring worm), the ages of the child at each application
(between 0 and 16 years), the prescribed beam exposure in’
roentgens (R) at each exposure, and the added filtration (in
mm of aluminum [Al]) used at each exposure. The actually
recorded variables (W) for each child are their number of x-ray
applications, a code for treatment center or centers at which
the x-ray therapies were administered (most applications were
at one of three centers), and the age of the child at the
time of their first exposure. Also available are the types of
x-ray machines that were used at most of the centers and

" the prescribed exposure and filtration used at most of the

centers. Note that the ages at second and subsequent x-ray
applications and the order of treatment centers for children
who received x-rays at more than one center are unknown.

The individual dose estimates used in the previous analyses
of the tinea capitis study group ignored some of the
complications. It was thought, based on the phantom studies
results, that the thyroid dose for a 6-year-old child receiving
a single x-ray administration was about 0.09 Gy (gray). An
adjustment was made for younger and older children based
on'typical distances between the radiation source and the
thyroid glands, so that the dose for older children was less
than 0.09 and for younger children was greater than 0.09:
the specific adjustment is detailed in Section 3.2. This dose
was then multiplied by the number of applications to arrive
at an estimated total dose. This might tend to overestimate
doses for those 9% of the children who received more than
one application since it makes no allowance for their increase
in age.

Our approach uses more formal statistical modeling. From
the relevant phantom studies, we (a) devise and estimate
models for E(D | X,V,0); from considerations of the study

population and with  some additional assumptions, we (b)

devise models for the distribution of V given X and W; and
putting these two together gives (c), a model for E(D | X, W)
and therefore the ingredients for the likelihood function in
(6). These three tagks are detailed in Sections 3.2, 3.3, and 4,
respectively.

3.2 Dosimetry from Ezperiments on Phantoms

Several studies experimentally estimated radiation thyroid
doses ‘associated with tinea capitis radiotherapy by exposing
anthropomorphic phantoms to similar x-ray conditions
(Schulz and Albert, 1968; Werner, Modan, and Davidoff, 1968;
Lee and Youmans, 1970; Modan et al., 1977). From the early
dosimetry studies, it was believed that conditions like those in
Israel would produce absorbed doses to the thyroid of about
0.06 Gy on a 6-year-old child treated a single time. Modan
et al. (1977) believed that doses would tend to be larger for
‘ive children, who might have been positioned imperfectly and
ho would have moved during the course of treatment. They
vestigated the effect of slight repositioning of the phantoms
or to exposure and found a 6-year-old dose to be closer to

1 Gy.

Our models for E(D | V, X, ©) and {phantom(©) are based
on the combined data from the Lee and Youmans (1970) and
Modan et al. (1977) studies, with an indicator variable to
represent whether movement had been simulated, a presumed
physical model for age adjustment, and some additional
random effects. The data are included in the {phantom(©)
portion of the combined likelihood in (6).

There is insufficient data from the anthropomorphic
phantom studies to adequately estimate the effect of age on
dose. Results from similar experiments on water phantoms
and mathematical models were used to extrapolate the results
to children of other ages. The result may be expressed through
multiplicative adjustment factors, C4, which specify the dose
for a child of age A relative to the dose for a child of age
6 exposed under the same conditions. The dose adjustment
factors for ages 1,2,...,15 are as follows: -1.70, 1.50, 1.39,
1.25, 1.10, 1.00, 0.90, 0.82, 0.74, 0.66, 0.63, 0.60, 0.59, 0.58,
and 0.56. For example, all else equal, the dose for a 1-year-old
child would be 1.7 times the dose of a 6-year-old.

After considering sources of uncertainty and analyzing the
phantom data of Modan et al. (1977) and Lee and Youmans
(1970), we developed the following model for the distribution
of dose, D, on a single course of treatment from rounded
(to the nearest integer) age of exposure, A, added filtration
(in mm of aluminum), F, and prescribed beam exposure (in
roentgens) R:

log(D) = log(CAR) + 60 + 61 F2 + e + €, +er,  (7)

where © = (6p,60;) are unknown parameters and the
€’s are random error terms representing within-individual
effects, between-individual effects, and random errors due
to differences between prescribed and actual skin exposure.
The error terms are taken to have mean zero and standard
deviations oy, 0p, and or, respectively.

The random error €, represents a within-individual effect,
reflecting the different thyroid doses that would occur if
a child were hypothetically irradiated twice under identical
conditions. The sources of this term are primarily movement
during treatment and peculiarities in positioning the body
(and shield) for treatment. An estimate of the standard
deviation o, obtained from the Modan et al. (1977) phantom
study, in which a 7-year-old phantom was repositioned
between repeated irradiations, is 6y = 0.17 based on 13 d.f.
However, this estimate involves speculation that the research-
ers accurately simulated the movement and positioning of a
live child with their manipulations of the phantom and is
therefore treated with some skepticism. The Modan et al.
study does support the assumption that the within-individual
errors for log dose are normally distributed.

The random errors ¢, represent between-individual effects,
reflecting the different thyroid doses for different children of
identical rounded ages under ideal machine conditions due
to differences in head size and shape. An estimate of o}, from
the three distinct phantoms investigated by Lee and Youmans
(1970) is 6, = 0.49 on 2 d.f. We will assume normality for
the between-individual errors, but this assumption is purely
speculative. To the level of roughness of the entire analysis
though, it seems innocuous.
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We have no data for estimating the standard deviation of
er. A study of a single machine by Schulz and Albert (1968)
found that the actual skin exposure might differ from the
prescribed amount R by 15% or more. The physicist among
us (MS) believes that around 25% is a better estimate for that
type of machine during that era. We will explore a range of
values or that includes these possibilities.

If normality is assumed for the three random errors in (7),
then standard results for the log-normal distribution imply
that the mean dose received by child ¢ on their £th application,
as a function of their age (A;p), exposure (R;), and filtration
(Fy¢) on the £th application, is

E(Di¢ | Aig, Rig, Fie)
= Ca, Ricexp {80 + 01F% + (05 + 03 +07) /2} .

Letting D; represent the total dose for irradiated child 4,
which is the sum of doses on all their L; applications, and
letting V; represent the ages, exposures, and filtrations at all
the child’s x-ray applications, we have

DY = E(D; | V;,6)
L;
= ZCA“RM exp {00 +01Fp + (aﬁ, + org + 03) /2} .
£=1
(8)
3.3 Distribution of Ideal Dose Predictor Variables

In this section, we detail the models used for f(V; | W;).
The important components of this are the distribution of
second and subsequent ages of exposure for those children
who received multiple applications and the distribution of
beam exposure, R, and machine filtration, F, given what is
known about where the child received their x-ray treatment
or treatments. The age at first exposure A;; is known for all
individuals in the study. A histogram of these is displayed in
Figure 1. For those individuals who were irradiated more than
once, however, it is only known that their ages at second and
subsequent exposures were at least 1 year greater than their
age at first exposure and less than 16.

As an approximation to f(Asg; | Ay;); we used the observed
conditional distribution of first ages greater than Aj; + 1,
i.e., the part of the histogram in Figure 1 to the right of
A1; + 1. This choice carries the assumption that, e.g., the
relative frequencies of ages 7, 8, 9, and so on for the second
treatment Of a child whose first treatment was at age 6 are
the same as the relative frequencies of those values for the
age at first treatment. Although it is impossible to check this

assumption, it seems reasonable for the level of approximation -
required and much better than assuming the second age was

the same as the first, as was implicitly assumed for the original
dose calculations. The densities f(Asz; | A2;) and f(Aqg; | A3zq)
were similarly defined in terms of the histogram in Figure 1.

The filtration and nominal exposures depend on the
machine and location. Table 1 shows what is known about
where the irradiation took place, e.g., a subject whose
irradiation code is 03 is known to have had one course of
treatment at treatment center 1 and one course of treatment
at treatment center 2, but it is not known which came first.
Table 2 shows the information known about prescribed skin
exposure and filtration for the machines used.
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Figure 1. Histogram of the age at first treatment for
irradiated subjects. "

In treatment center 3, the machines had a common filtra-
tion 0.5 mm Al and nominal exposure 425 roentgens. The
same occurs in treatment center 2, although the values of the
filtration (0.0) and nominal exposure (350) differed from that

Table 1
Description of the places of irradiation and the number of
irradiations in the tinea capitis data set. Here H = treatment
center 1; T = treatment center 2; J = treatment center
3; N = unknown; O = other; A = abroad. The order of
visitation for the centers for those children with courses
at several centers has not been retained in the database.

Number of courses

Code for place

for irradiation 1 2 3 4 Centers
01 7187 394 17 O H
02 1261 13 0 0 T.
03 0 11 1 0 H4+T
04 1364 30 1 0 J
05 2 27 4 0 H+1J
06 0 3 0 0 T+J
09 0 75 6 0 H+ O
10 0 12 0 0 T+0
12 0 4 0 0 J+ 0
13 0 0 1 0 H+J+0
17 2 140 38 5 H+ A
18 0 4 0 0 T+ A
20 0 24 8 0 J+ A
21 0 0 2 0 H+J+A
33 0 136 18 0 H+N
34 0 3 0 0 T+ N
35 0 0 2 0 H+T+N
36 0 28 6 0 J+ N
37 0 0 1 0 H+J+N
41 0 0 1 0 H+O+N
49 0 0 3 0 H+A+N
52 0 0 1 0 J+A+N
53 0 0 0 1 H+J+A+N
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Table 2
Available information about machines used at
the various treatment locations; NA means not
available. Notice that most treatments were performed
in treatment center 1, and only about 3% were
performed in N (unknown), abroad, or other.

Percentage Prescribed
of all exposure
Place treatments Machine Filtration (R)
Treatment
center 1 72 1 0.5 400
2 0.5 384
3 0.5 383
4 0.6 NA
Treatment
center 3 13 1 0.5 425
2 0.5 425
. 3 0.5 425
Treatment
center 2 11 1 0.0 350
2 0.0 350
N 1.6 1 1.0 350-400
Abroad 1.9 NA NA
Other 0.8 NA NA

in treatment center 3. In treatment center 1, there were
four machines, with filtrations (0.5,0.5,0.5,0.6) (mm Al)
and nominal exposures (400, 384, 383, NA), where NA means
unknown, but the machine used on each child was not
recorded. Thus, for treatment center 1, we assumed that the
actual filtration was 0.5 with probability 0.75 and 0.6 with
probability 0.25. For the nominal exposure, we assumed that
the distribution was 400, 384, and 383, each with probabili-
ty 0.25, while, with probability 0.25, the nominal exposure
was taken to be uniformly distributed between 350 and
425, reflecting the range of nominal exposures recorded in
the various centers. For those recorded as being in site N
‘(unknown), the filtration was 1.0 but the nominal exposure
was unknown and again taken to be uniformly distributed
between 350 and 425. Finally, for those who were irradiated
abroad, neither filtration nor nominal exposure were available.
The nominal exposure was taken to be uniformly distributed
between 350 and 425, while the filtration was assumed to take
on the values (0.0, 0.5, 1.0) with probabilities (0.10, 0.85, 0.05),
a distribution somewhat in keeping with the observed
filtrations. We summarize the distributions of filtration and
exposure in Table 3.

Putting the pieces of this section together provides a

- distributional specification for f(V; | W;). The expectation of

total dose for irradiated child i may be expressed as follows:

E(D‘l I X‘i) Wi) 9)
Ly
=3 [ B0l X005 X WV, ()

The covariate vector X; has been included in the conditioning
statement in (8) to match the notation of the induced hazard
function of Section 2. The expressions on the right-hand side
of the equation are the same whether or not X; is included

Table 3
The distribution of filtration F;j and ezposure R;;.
The logarithm of the exposure is assumed to be

normally distributed with mean log(Ri;) and standard
" deviation or. Children exposed in treatment center

1 are assumed to be in one of conditions C1-Cy at

random, each with probability 0.25. For treatment
center 3, the condition is Cs. For treatment center 2,

the condition is Cg. For location N (unknown), the

condition is Cr. For other and abroad, the condition is Cg.

Condition :
label Nominal exposure R Filtration F -
C1 400 o 0.5*
Co 384 - 0.5
Cs 383 0.5
Ca Uniform(350, 425) 0.6
Cs 425 0.5
Cs 350 0.0
Cr . Uniform(350, 425] 1.0
Cs Uniform(350, 425] 0.0 with probability 0.10

0.5 with probability 0.85
1.0 with probability 0.05

since the important components of X; for predicting dose are
already included in V; (mainly, age at first exposure).

4. A Useable Likelihood Function

The model for the expectation of D; given V; and X;
in (7), along with the expression for E(D; | X;,W;) in
(9), completes the specification of the combined likelihood
function in (6). A Monte Carlo approximation to (9) may
be obtained by taking M samples from the distribution of
Vi=(Ai1,...,Air, Ri1, ..., Rip, Fa, ..., Fi) given (X, W).
Then approximately

E(D’L ’ Xi7 W’i7e)

M L
~ M Z ZC’Aumem

m=1 {=1

2 2 2
Ow + 0} + 0
X exp {90+01Fi23m+—1—u—§l-’-—3}.

(10)

In the log-likelihood function (5), D]-e is the person-years
weighted average of the doses for all individuals represented
in state j. Thus, for fixed ©,

M L
Dje =M1 Z Z ZwiCA,-ngiEm

iESj m=1 {=]

X exp { 80 + 61F 5,

+

aﬁ,+0§+a§}
2 )

(11)

where S; is the set of indices 4 corresponding to individuals
whose exposure history includes state j and w; is the person-
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Table 4
Results for the dose-response model e:cp(Xg;ﬁb,){l + Dexp(Bqr + X;rmﬁem)}.
Parameter estimates are given, along with standard errors (in parentheses).
There is obviously little difference between regression calibration and calibrated
likelihood. The results are for within-person standard deviation o, = 0.17,
between-person standard deviation op = 0.49, and the standard deviation of random
errors due to differences between prescribed and actual skin exposure or = 0.15.

Model with age at exposure
as modifying effect of dose

Regression Calibrated
Naive calibration likelihood
Terms background rate
Constant —11.94 (.65) ~11.95 (.65) —11.94 (.65)
Female indicator 1.37 (.33) 1.37 (.33) 1.37 (.33)
Africa indicator -0.29 (.33) —-0.30 (.32) -0.29 (.32)
Israel indicator —0.84 (.46) —0.84 (.46) —0.85 (.46)
Attained age in [15, 20) 1.05 (.56) 1.05 (.56) 1.04 (.56)
Attained age in [20, 25) 1.23 (.52) 1.23 (.52) 1.23 (.52)
Attained age in [25, 30) 1.32 (.51) 1.32 (.51) 1.32 (.51)
Attained age in [30, 35) 1.30 (.51) 1.30 (.52) 1.29 (.52)
Attained age [35, 00) 1.34 (.58) 1.34 (.58) 1.33 (.58)
Dose —0.38 (.57) ~0.53 (.57) ~0.52 (.58)
Effect modifier
age at exposure —0.12 (.09) —0.11 (.09) —0.11 (.09)
Maximized log likelihood —598.0 -597.8 —-598.4
Maximized log likelihood
without modifying effects —598.9 —598.6 -599.3
Dose without modifying effects ~1.05 (.41) —1.18 (.40) ~1.17 (.43)
Maximized log likelihood
without dose effects —-614.3 —-614.3 —-614.9

years of observation of individual 7 in state j as a proportion
of the total person-years of observation in state j. The Fisher
scoring algorithm may be used to find the values of B and ©
that maximize (6) with Dje expressed this way. We treated the

variance parameters, a?,,, sz, and a,z., as known and conducted
the analysis with several combinations of values within their
speculated ranges. '

We may now describe the two approaches for analysis more
succinctly. For regression calibration, the value of © was esti-
mated in a first stage and then tieated as known in the second.
The expected doses given available dose-predictor variables,
Dje, were calculated for each individual using (10). These
values were then used in place of true dose in a standard
routine for failure time regression via the subject-years ap-

proach. The calibrated likelihood approach used the Fisher

scoring algorithm to simultaneously estimate B and © in the
combined likelihood function (6). The result is approximate
likelihood analysis, with the approximation due to the drop-
ping of the condition T' > ¢ in the expected hazard function
(3) and due to assuming that covariates take on constant val-
ues within states formed by the cross-classification. The cross-
classification for sets S; in (11), in both cases, was based on
sex (two levels), origin (3 levels: Africa, Asia, Israel), age at
first exposure (eight levels: [0, 2), [2, 4), (4, 6), [6, 8), [8, 10),
(10, 12), (12, 14), (14, 16)), attained age (eight levels: [0, 15),
(15, 20), [20, 25), [25, 30), 30, 35), [35, 40), [40, 45), [45+)),

and expected dose (six levels: 0, (0, 7.5), [7.5, 15), [15, 22.5),
[22.5, 30), [30, 100)). Attained age at time of thyroid cancer is
the response here. Since the patients were all exposed as chil-
dren, there is little difference between using this response and
time since exposure. In the calibrated likelihood approach,
the cross-classification is performed at each iteration after an
updating of the estimates of © based on the combined data
sets.

5. Results

As seen in Table 4, the difference in the estimates from the
two approaches is very small relative to the standard errors.
Notice, though, that the standard error for the coefficient of

Table 5
The estimated relative risk when children
are ezposed at a dose of 0.1 Gy; 95%
confidence intervals are given in parentheses.

Model Age=1 Age =6 Age =15
Naive : 7.1 4.4 2.2
(3.2, 17.6) (2.4, 8.8) (1.2,9.7)
Corrected 6.3 4.0 2.1
(2.9, 15.3) (2.2, 8.2) (1.1, 9.6)
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dose is larger in the calibrated likelihood estimate, as would
be expected since this estimate correctly incorporates the un-
certainty in the estimate of ©. Neither approach, however,
incorporates the uncertainty in the estimates of the variances
of the random effects.

The results may be summarized as follows:

1. There is a statistically significant dose-response (one-
sided p-value = .009). Although the parameter esti-
mate for the modifying effect of age on the dose-res-
ponse increased by 40% when accounting for dosime-
try uncertainties, it is not statistically significant (two-
sided p-value = .37). Some specific estimates of relative
risk are shown in Table 5.

2. Accounting for error in dosimetry changes hardly any
of the parameter estimates or the relative risk for dif-
ferent ages at first exposure.

3. These results are for (ow,op,0r) = (0.17,0.49,0.15).
We have redone the analysis with (0w, 04, 0r) = (0.17,
0.25, 0.25) and (0.5,0.5,0.5) (as an extreme case), and
there is little change in the results. The estimated effect
of dose tends to be smaller when larger variances for
the random effects are assumed, but the magnitude of
the change is quite small relative to its standard error.

6. Discussion and Conclusions

Our reanalysis of the effect of thyroid radiation dose on age-
specific thyroid cancer rates from the Israeli children irradi-
ated for tinea capitis and their matched controls showed little
change from the previous analyses. We shall provide a few
comments in conclusion about the general statistical points
that may apply to similar data problems with measurement
errors.

At the heart of the statistical framework here is the avail-
ability of a large primary data set with health outcomes and
imprecisely determined doses and a secondary data set with
information for predicting dose from available dose-predictor
variables. A Berkson error arises from the use of the expected
dose (from a regression model) in place of true dose. A clas-
sical error arises from the use of estimated coefficients in the
regression model. An important point is that the classical er-
rors in dose estimates for different individuals are correlated.

Another epidemiological problem with this structure is the
study of health effects of indoor air pollutants, as discussed
by Tosteson, Stefanski, and Schafer (1989). Although interest
was in a dose-response model for total exposure to nitrogen
dioxide, the actual exposures could only be predicted from
readings on stationary monitors and prediction equations de-
veloped from secondary data sets. Those authors treated the
predictions as having Berkson errors, ignoring the classical er-
rors involved in the estimation of the regression equation. In
our approach for the tinea capitis data, we have formally com-
bined the prediction problem and the dose-response problem
by performing a single likelihood analysis. .

In the tinea data problem, the classical errors due to esti-
mating unknowns in the prediction equation turned out not
to be consequential. This is apparently because the part of the
dose prediction model involving unknown parameters (the in-
tercept and the part having to do with the effect of machine
filtration on dose) was not as important as the parts that were
free of unknown parameters (the parts having to do with the

effects of beam exposure and age). Since the model of interest
here was linear in dose, the Berkson error had little effect and
was easy to handle. In nonlinear-in-dose models, the effect of
the Berkson error might be consequential and linearization
may be needed to approximate the induced hazard function
given available predictor variables, corresponding to (4).

Much of the discussion about the general statistical struc-
ture for the tinea study is overshadowed by the high degree
of speculation involved in transporting the dose prediction
model from the phantoms to the live children. We introduced
random effects for additional sources of uncertainty and ex-
plored results for various presumed values for their standard
deviations. While there are likely to be inaccuracies in mod-
eling and missed sources of uncertainty, the lack’ of sensitivity
of the results to changes in the standard deviations offers
some assurance that the uncertainties may be handled with-
out more precise modeling.

ACKNOWLEDGEMENTS

Carroll’s research was supported by a grant from the Na-
tional Cancer Institute (CA57030) and through the Texas
A&M Center for Environment and Rural Health via a grant
from the National Institute of Environmental Health Sciences
(P30-ES09106). Stovall’s research was supported by a con-
tract from the National Cancer Institute (N01-CP-91024). We
thank Professor Baruch Modan for permission to use the tinea
capitis data and an anonymous referee for helpful comments
on organization.

RESUME

En Israél durant les années 40 et 50, plus de 20 000 enfants
ont été traités pour le tinea capitis (teigne) par irradiation
pour provoquer 1’épilation. Les études de suivi ont montré
que la dose de radiations était associée au développement de
tumeurs malignes de la thyroide. Malgré la nette évidence
d’un tel effet, 'ampleur de la relation dose-réponse est moins
claire & cause des erreurs sur l’estimation de la dose reque
par la glande thyroidienne. Ces erreurs peuvent induire dans
I'estimation de I’effet de dose un biais, lequel n’a pas été to-
talement apprécié dans les études initiales. On revient sur ce
fait en décrivant d’une fagon détaillée comment les erreurs de
dosimétrie peuvent se produire et en développant un nouveau
modele “dose-réponse” qui prend en compte les incertitudes
sur la dosimétrie. Ce modele est une nouvelle variante com-
plexe du modéle multifactoriel classique de ’erreur de Berk-
son avec des composantes sur les erreurs de mesure et sur
les données manquantes. L’analyse des données sur le tinea
capitis suggére que l'erreur de mesure sur la dosimétrie a un
effet négligeable sur I’estimation de 1'effet dose-réponse, sur
Pinférence statistique et sur l'effet modificateur de 1'age au
moment de Pexposition.
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APPENDIX
Derivation of (3)

As in Prentice (1982) and Pepe et al. (1989), the induced
hazard function is
h(t| X,W,B)
- g BEST<t+A[X,W,B)
A—0 A
. pri <T<t+A|D,X,W,B,T >1t)
= lim -
A—Q A
x f(D | X,W,T > t,0)dD
/ . prt<T<t+A|D,X,BT>t)
= lim
A—0 A
x f(D| X, W, T >t¢,0)dD,

this last step following from the conditional independence as-
sumption (2). We have thus shown, as claimed, that h(t |
X, W,B)=E{h(t| D, X,B)| X, W, T >t,0)}.




