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Nonparametric evaluation of birth cohort trends in

disease rates
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Background Although interpretation of age-period—cohort
" analyses is complicated by the non-identifiability of
maximum likelihood estimates, changes in’ the slope of
the birth-cohort effect curve are identifiable and have
potential aetiologic significance.

Methods A nonparametric test for a change in the slope
of the birth-cohort trend has been developed. The test
is a generalisation of the sign test and is based on
permutational distributions. A method for identifying
interactions between age and calendar-period effects is
also presented.

Results The nonparametric method is shown to be
powerful in detecting changes in the slope of the birth-
cohort trend, although its power can be reduced
considerably by calendar-period patterns of risk. The

method identifies a previously unidentified decrease in
the birth-cohort risk of lung-cancer mortality from 1912
to 1919, which appears to reflect a reduction in the in-
itiation of smoking by young men at the beginning of
the Great Depression (1930s), The method also detects
an interaction between age and calendar period in
leukemia mortality rates, reflecting the better response
of children to chemotherapy. .

Conclusion The proposed nonparametric method provides
a data analytic approach, which is a useful adjunct to
log-linear Poisson analysis of age—period—cohort
models, cither in the initial model building stage, or in
the final interpretation stage.

Keywords age—period—cohort model, nonparametric analy-
sis, permutational test, lung cancer, leukemia.

Introduction

We have previously demonstrated that, in spite of the
lack of unique estimates in general for the parameters
specifying a particular age—period-cohort model, a
change in the slope of the long-term linear trend in
calendar-period effects, or in birth-cohort effects, can be
identified unequivocally!. Parametric methods were
developed to identify changes in trends in birth-cohort
or calendar-period parameters and it was demonstrated
that such changes can have important implications
regarding disease aetiology!. Conventional age—
period—cohort analyses of variation of disease rates over
time assume a log-linear relationship of age, calendar-
period and birth-cohort effects, and estimate the
parameters specifying the model by Poisson maximum
likelihood methods?6. The log-linear relationship is
suspect for some cancer mortality analyses, because
there are known age-treatment interactions for some
cancers (e.g. tamoxifen increases survival to a greater
extent in post-menopausal than in pre-menopausal
breast-cancer patients’) and there may be differences
among age groups in the extent of excess risk imparted

by certain risk factors (e.g. childbearing history may
have a greater impact on post-menopausal than pre-
menopausal breast-cancer risk®). Methods for detecting
changes in long-term trends that do not rely on the usual
parametric assumptions underlying age-period—cohort
analyses would therefore be useful. In addition, differ-
ences among age groups in the magnitude or direction
of their calendar period trends can, in conventional
analyses, lead incorrectly to indications of significant
birth-cohort trends. Hence, methods for examining data
for birth-cohort trends should be able to distinguish
between such age-calendar-period interactions and a
bona fide change in the magnitude or direction of the
birth-cohort trend. :

We present a nonparametric method to assist in the
evaluation of trends in disease risk with birth cohort, or
calendar period. The method, which requires no formal
model specification, is based on permutational distribu-
tions and can identify changes in the slope of the linear
trend in risk with successive birth cohorts (or calendar
periods), as well as identify situations in which apparent
birth-cohort trends can be explained by age acting as an
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effect-modifier of the calendar-period trend. A related
technique has previously been applied to the analysis of
trends in US Caucasian female breast-cancer mortality
rates>10, and the results of the nonparametric approach
have been verified using a parametric analysis'. In this
paper we present the development of a more powerful
nonparametric method in detail. We examine the operat-
ing characteristics of the proposed permutation tests in a
simulation study, verify the adequacy of normal approx-
imations to the distribution of the proposed test statistic
and illustrate the use of the technique in two examples,
yielding very different interpretations of apparent birth-
cohort trends.

Concepts and notation

The starting point for the nonparametric age-period—
cohort analysis is, as with the corresponding parametric
analysis, an array of disease rates classified by age inter-
val and calendar period. Let R, ., denote the rate for the
ith of A age intervals in the ]th of P calendar year peri-
ods, where k = A +j —i indexes the corresponding
birth cohort. In this notation, there axe C=A+P —1
birth cohorts, with larger values of k corresponding to
more recent birth cohorts. The standard parametric age—
period—cohort analysis is based on Poisson regression
with the log-linear model:

loglER,; )] = 047+ 7, 1)

where the ¢, are the age effects, the 77; are the calendar
period effects and the 7, are the birth-cohort effects.

Disease rates typically vary considerably with age,
therefore the nonparametric procedure will be based on
comparisons of age-specific rates. The first step in the
nonparametric method is to determine within each age
interval the directions of the changes in age-specific
rates for all pairs of adjacent calendar periods. Accord-
ingly, define the indicator variable N;  to equal one if
R, 1151 < Ry and to take the value zero if R 101>

”S,for1—12 Ar=12,..,P— 1,ands—12

...C—1. Thus, Nm 1 indicates that the rate in age
1nterval i was lower in period r+ 1 than in period r (or,
equivalently, lower in birth cohort s+ 1 than in birth
cohort s).

Before proceeding with the development of the
method, consider an instructive example to introduce
basic concepts of the nonparametric approach. Suppose
there are five calendar periods and nine age groups,
resulting in 13 birth cohorts. Table 1 shows what a tabu-
lation of the indicator variables, N“r , would look like,
with rows corresponding to age groups (i.e. to index i)
and columns corresponding to the calendar periods
being compared (i.e. to index r, where r indicates the
comparison of period r+1 to period r). Note that,

although there are five calendar periods and 13 birth
cohorts in the example, there are only four paired com-
parisons of adjacent calendar periods and only 12 paired
comparisons of adjacent birth cohorts.

Examination of patterns of change in adjacent birth
cohorts is difficult in a tabulation like that shown in
Table 1, because comparisons between the same two
adjacent cohorts appear on downward diagonal rows.
Thus, when examining cohort patterns it is. useful to
rearrange the table, so that all comparisons between the
same two adjacent cohorts lie on the same horizontal
row. Table 2 gives such a rearrangement of Table 1. In
Table 2, each upward diagonal row corresponds to one
of the nine age groups and each horizontal row contains
all possible comparisons of age specific rates between
the two adjacent birth cohorts listed on the left. From

Table 1 Tabulation of the indicator variables, Ni’r’s, for an
example with five calendar periods and nine age groups

o ’Calénd’al" 'péxjiods pdﬂlpél’éd ~

Table 2 Cohori—period—change matrix with five calendar
periods and nine age groups
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the definition of the N, values it follows that if the risk
of disease decreased in the later birth cohort (i.e.
indexed by s+1) compared with the earlier birth cohort
(i.e. indexed by s) then the entries on row s of Table 2
will predominantly have value one. If the disease risk
increased in the later birth cohort, on the other hand, the
entries on row s will be predominantly zeros. The tabu-
lation of the N; values arranged as in Table 2 will be
referred to as the cohort—period—change matrix.

The pattern of zeros and ones in a cohort—
period—change matrix can be very informative, as the
following examples demonstrate. The data in Table 3
are constructed to indicate the pattern expected if there
is a change in the slope of the birth-cohort trend in risk.
In this contrived data-set, all age-specific rates increased
5% with each successive birth cohort, going from
Cohort 1 through 7 and then all age-specific rates
decreased 5% with each successive birth cohort, going
from Cohort 7 through 13. Table 4 gives the cohort—
period—change matrix for the contrived data in Table 3.
The one in the top entry of the last column of Table 4
indicates a decrease in the youngest age group in going
from Period 4 to 5 (i.e. from 1.7 to 1.6 per 100 000).
Similarly, the zero in the bottom entry in the last column
indicates an increase in the oldest age group in going
from Period 4 to 5 (i.e. from 607.5 to 637.9 per 100
000). Although the change in the direction of disease
risk indicated in Table 3 is more abrupt than would usu-
ally be expected, Table 4 is a useful paradigm to indi-
cate the type of pattern created by changes in
birth-cohort trends. In particular, note the difference in
the distribution of zeros and ones in different blocks of
successive horizontal rows of the cohort—period-change
matrix. A decreasing birth-cohort trend over several
successive birth cohorts creates a block of adjacent rows
in which ones predominate, while an increasing birth-
cohort trend over several successive cohorts creates a
block of adjacent rows in which zeros predominate.

Table 3 Contrived disease rates (per 100 000) with increasing
birth cohort trend from Cohort 1 to Cohort 7 and decreasing
birth cohort trend from Cohort 7 to Cohort 13

~ Calendarperiods
23 4 s
19 18 1T 16
39 37 35 33
18 74 70 67
17.2 + 164 - 155 - 14.8
344 .. .36.2 344 - 326
689 723 759 721
~137.8 - 144.6.. 151.9 159’.5"
27552893 303.8 3189
551.0 - 578.6.. 607.5 6379

It is clear, by analogy, that a change in the direction
of the calendar period trend would result in a different
distribution of zeros and ones in different blocks of
adjacent columns of the cohort—period—change matrix.
Thus, changes in cohort trends and changes in calendar
period trends create very different patterns in the
cohort-period—change matrix. A third situation is
demonstrated in Table 5. Table 5 looks similar to Table
4, with a different distribution of ones in the top half of
the table compared with the bottom half of the table.
Table 5, however, corresponds to a situation in which
disease rates are decreasing with calendar period in the
three youngest age groups (i.e. all entries are ones in the
top three diagonal rows), are increasing with calendar

Table 4 Cohort—period—change matrix for the contrived rate
structure in Table 3, illustrating the paradigm for an abrupt
change in the direction of the birth cohort trend

Table 5§ Cohort—period—change illustrating heterogeneity of
calendar period trends by age
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period in the three oldest age groups (i.e. all entries are

" zeros in the bottom three diagonal rows) and are
unchanged in the middle three age groups (i.e. 50% of
the shaded entries are ones). In developing our method
we want to be able to distinguish between such a hetero-
geneity of calendar period trends by age and a bona fide
change in the birth-cohort trend.

Table 6 gives US lung cancer mortality rates for
Caucasian males between the ages of 24 and 83 from
1970 to 1989. Table 7 presents the cohort-period—change
matrix for the lung cancer data in Table 6. Summing
across each horizontal row in Table 7 provides a sum-
mary comparison of the two birth cohorts listed in the
first column. Each row sum, given in the last column of

Table 6 Two-year age and calendar year US male lung cancer mortality rates®

071 7273 745

030032 017
049 020 023
066 043 056

11 0% L1
o250 191 194 16

: Calendar,périt)d
78-79  80-81
042 043,

040 022

035 044

071 054

82-83 84-85 86-87 88-89
0163 0162 018 - 0.099
024 023 021 017
039 051 050 033
066 056 085 067
) 1;15,’; 1;07 ; : e ,
o
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Table 7 Cohort—period change matrix for two-year data on Caucasian male lung-cancer mortality in the USA

e s ‘Calendar.p‘éri()ds:COinpéi'éd : Gt L
CBith 723 45 767 789 801 823 84-5 867 889
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compared . 70-1 723 45 767 789 801 823 845 867  Sum

1963 t0 1961
196101959
1959101957
1957101955
1955t01953
1953 t0:1951 o LA e
1951101949 i S0
1949 t0 1947 o : 1
194710 1945
1945101943
1943101941

1941 t0 1939
1939101937
1937101935 ¢

-

the table, yields the number of times age-specific rates
were lower in the latter of the two cohorts listed in the
first column. It is apparent in the lung cancer data that
row sums tend to be large in the top half of Table 7,

- suggesting a decreasing cohort trend in recent cohorts,

and small in the bottom half, suggesting an increasing
cohort trend in early cohorts. To provide a useful
nonparametric method, a techmique is needed to
quantify the degree to which such a pattern of row
sums in a cohort-period-change matrix is unusual
and, if the pattern is found to be unusual, to determine
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if it is consistent with a change in the trend of birth-
cohort risk.

Nonparametric test statistics

As noted above, changes in the birth-cohort trend will
result in changes in the distribution of zeros and ones in
the horizontal rows of the cohort-period—change matrix.
Sums of the row totals (final column of Table 7) over
consecutive rows in the table can quantify the direction
of the birth-cohort trend. Consider blocks of seven con-
secutive rows, summarising the birth-cohort trend over a
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16-year period. The sum of the row totals for the upper
shaded block of seven rows in Table 7 is 53, while the
sum for the lower shaded block is 17. The difference
between these two sums, 36, can be used to quantify the
magnitude of the change in the direction of the birth-
cohort trend in the latter era (1931-45) compared with
the earlier era (1903—17). The shaded blocks in Table 7
were chosen to maximise this difference for blocks of
seven rows. Two different permutation approaches have
been examined to test the significance of this maximum
difference, i.e. to test for a significant change in the
birth-cohort trend in risk.

Method 1 :
The first approach is based on the permutation distribu-

tion within each age group, under the global null
hypothesis that rates are constant over both calendar
periods and birth cohorts. As noted earlier, comparisons
of disease rates within age groups form the foundation
of the nonparametric approach because age-specific
rates will remain constant in the absence of any secular
changes in disease risk. Thus, under the null hypothesis
that disease rates are constant over both calendar years
and birth cohorts, the distribution of the number of
decreases in the n paired comparisons of age-specific
disease rates, in adjacent calendar periods in a particular
age group over n + 1 consecutive calendar periods, is
the same as the distribution of the number of decreases
in adjacent integers in all possible permutations of the

integers one through »n + 1. For example, the permuta-

Table 8 Exact distribution of number of decreases in consecutive integers in all permutations of the integers 1 ton + 1

ST U N O\UI-P- 1)

04793651
- 0.2363095 -

- 0.0238095
0.0001984
0.0000248
0.0061260- -
0.1064732
10.3873760

03873760

©0.1064732 -
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tion (3, 2,4, 5, 6, 8, 7, 1) has three decreases (3,2;8,7;
7, 1) in adjacent integers. The probability distributions
for n up to the value of nine are given in Table 8. The
probability mass is heavily concentrated in the middle
for all n > 1. Note, for example, that in the comparison
over 10 time periods (i.e. n = 9), an observation of < 2
decreases or 2 7 decreases (i.e. six of the 10 possible
outcomes) would indicate a significant trend in disease
rates using a two-sided test at the 5% nominal signifi-
cance level. Examination of Table 7 reveals that age-
specific rates increased significantly for all but one of
the age intervals over 58 years of age, while rates

~decreased significantly for several age intervals under

46 years of age.

A permutational approach, to compare the difference
between sums of consecutive row totals for two blocks
of rows, can be based on these age-specific permutation
distributions. In Table 7, for example, inferences can be
based on the distribution obtained by generating 30 ran-
dom permutations of the integers one through 10, each
of the permutations corresponding to a particular age
group. The distribution of the maximum difference
between sums of row totals in Table 7 for disjoint
blocks of size seven can be determined from the distrib-
ution generated by these 30 age-specific permutations,
using Monte Carlo simulation. This approach assumes
no calendar-period pattern, therefore it will be conserva-
tive. That is, if there are any calendar-period differences
in risk, the variability among row sums will be smaller

NONPARAMETRIC ANALYSIS OF BIRTH COHORT TRENDS

'Number of decreases .

00061260
00000248
S 276E-06

© 00013834

- 0.0402557

than the variability under the global null hypothesis.

Suppose, for example, lung-cancer rates increased
each calendar period from 1970 through 1977 and
decreased each calendar period thereafter. If there is no
birth-cohort pattern of risk (i.e. the null hypothesis for
birth-cohort risk), the first three columns of Table 4
would contain predominantly zeros and the last six
columns would contain predominantly ones. The row
sums would show much ‘less variability about their
expected value of six than the row sums under the global
null hypothesis would show about their expectation of
4.5. Thus, birth-cohort patterns could be obscured by
strong calendar-period patterns. This is unlikely to pose
a problem for analysis of cancer mortality rates at most
sites and, for the lung cancer example in Table 7, the
difference of 36 is highly significant (p < 1076) using
this method.

Method 2

A second permutational approach makes inferences con-
ditional on the observed calendar-period pattern of risk.
Inference is based on a randomisation test generated by
the distribution of all possible permutations of A (A =
30 in Table 7) upper diagonal rows (i.e. the rows corre-
sponding to comparisons of age-specific rates in the same
age interval). Based on a large number of randomly-
selected permutations of the age-specific rows, the per-
centage of outcomes for which the maximum difference
between sums of row totals for disjoint blocks of size
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seven is 2 36 provides a Monte Carlo estimate of the
permutational significance level. Based on one million
random permutations, the difference of 36 in Table 7 is
highly significant (p = 8X107%).

Simulation study of permutation tests
A simulation study examined the operating characteris-
tics of the two permutation approaches for age intervals
and calendar periods identical to those in Table 7, using
two age-distributions for disease rates (that for lung can-
cer among US men and that for breast cancer among US
women). Poisson random variates were generated with
means -defined by the standard log-linear model
described in equation (1)!'. As shown in Table 9, both
methods performed adequately under the null hypothe-
sis of no variation in risk with birth cohort (i.e. & = 0).
The inflated error rate for the lung-cancer rates with &
= ( and the calendar-period trend defined by 4 = —0.1
reflects the impact of ties due to zero counts at young
ages (the breast-cancer rates are larger than lung-cancer
rates at the younger age intervals). These lead to fewer
decreases than expected in the top rows of the
cohort—period—change matrix (corresponding to later
birth cohorts).

In practice, age groups with multiple zero counts
should be avoided in the application of the nonparamet-

ric methods. The results for 8 = 0.01 and 4 = 0 indi-
cate that the permutation approaches are remarkably
powerful when there is no calendar:-period pattern of
risk. For & = 0.01 and 4 = 0 the lung cancer rates in
the oldest age group increase from 455 per 10°, in the
first calendar period, to 498 per 10°, in the last calendar
period. Rates in the youngest age group decrease from
2.1 per 108, in the first calendar period, to 1.9 per 106, in
the last calendar period.

The conservative nature of Method 1 in the presence
of a calendar-period pattern of risk is demonstrated by
the low power when 8§ = 0.075 and 4 = 0.1. The
power of the methods for the breast-cancer case with &
= 0.085 and 4 = —0.1 is remarkable. For this case, the
birth-cohort trend is not strong enough to change the
number of decreases expected, based on the calendar-

-period pattern in any age group. Rates decrease with

each calendar period from Periods 1 through 6 and
increase with each calendar period from Periods 6
through 10 for each age group. However, the pattern is
such that the rate decreases are larger than the increases
in younger age groups, while the rate increases are
much larger than the decreases in older age groups,
which leads to row sums sufficiently different to pro-
vide power in excess of 90% for both methods.

Table 9 Monte Carlo simulation results (the rejection frequency in 1000 random pseudo-samples) examining the false positive

error rate and power of the permutation tests at a 5% nominal level

#The coefficient §, where the birth-cohort-parameters in the standard log—linear age—period—cbhort model are defined by the equations:

Y= 0k — Dfork=1,2,..,19and ¥, = 8(39 — k) for k = 20, 21, ..., 39.

bThe coefficient 4, where the calendar period parameters in the standard log-linear age-period—cohort model are defined by the equations:

7= AG—Dforj=1,2, ...,6and7lj= A1l —j)forj=17,8,9,10.
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Normal approximation to method 1

For the age-specific permutation distributions
underlying the first approach, it can be shown that for
any n disease rate comparisons in the same age interval
over n+ 1 consecutive calendar periods, the expected
number of decreases under the null hypothesis of equal
rates over time is #/2 and the variance is (n + 2)/12 (see
Appendix 1). Comparisons in different age intervals are
independent and the number of decreases in any block
of comparisons can be expressed as the sum of the num-
bers of decreases in sub-blocks, where each sub-block
represents comparisons within the same age interval.
Therefore, the mean and variance of any block of com-
parisons represented in the cohort—perlod—change
matrix can be calculated by summing the means and
variances of the component age-specific sub-blocks. For
example, the number of decreases in a block of H con-
secutive birth cohorts compared over K consecutive cal-
endar periods (restricted to blocks over which
comparisons can be made over all K calendar periods)
can be calculated as the sum of the number of decreases
in H + K—3 sub-blocks, each representing people in the
same age interval. In each block of eight consecutive
birth cohorts between 1903 and 1945, compared over
the 10 calendar periods in Table 7, there are 15 such
sub-blocks, each representing a 2-year age interval.
There are two sub-blocks each with 1, 2, 3, 4, 5 and 6
comparisons, and three sub-blocks with 7 comparisons.

It follows that for the 63 possible comparisons in such a
block of consecutive birth cohorts, the mean number of
decreases is calculated as:

2X(142+3+4+5+6)/2 + 3X7/2 = 31.5

and the variance is calculated as:
2X(3+4+5+6+7+8)/12 + 3X9/12 = 775

Similarly, it follows that for a block of five consecutive
age intervals, compared over the 10 calendar periods in
Table 2, the mean number of decreases is 5X9/2 = 22.5
and the variance is 5X11/12 = 4.58.

More generally, let R denote any block of cells in a
cohort—period—change matrix, such as that in Table 7.
The total number of decreases in the block can be calcu-
lated as Dy = 22 N; ., where the summation is over
the age 1ntervals mdexed by i and calendar periods
indexed by r which define the block R. The total num-
ber of comparisons in block R can be calculated as Tx

= ZX (N, +M, ) where M; =1-N, . The expected
number of decreases in block R is Ty /2 The variance of
the number of decreases is Vi = Z (n+2)/12 where n
is the number of comparlsons in the ith age interval i 1n
block R.

To test the nuil hypothesis of no change in mortality
rates over time in block R, define the test statistic:

Z, = (Dp—Tg/2 = 0.5)//Vy

where the continuity correction, 0.5, is added when
Dy —Tg/2 < —0.5 and is subtracted when Dy —Tp/2 2
0. 5 The normal approximation, based on Z, was evalu-
ated for a block of eight consecutive birth cohorts com-
pared over 10 consecutive time periods in a Monte
Carlo simulation study and found to be quite good
(Table 10). For very small blocks, the exact distribution
can be enumerated, or a Monte Carlo approximation of
the exact distribution can be employed.

Let P, denote the proportion of comparisons in block R
indicating decreases, that is, P, = Dp/T . Then, to com-
pare the frequency of decreases in two disjoint blocks, R1
and R2, in a cohort—period—change matrix the statistic:

Rl R2 (PRI PRZ)/\/ RI,R2

where Vi, z,, the variance of the difference in propor-
tions, derived in Appendix 2, can be compared with the
percentiles of a standard normal distribution. As with
the test statistic, Z.,, if there are concerns about the ade-
quacy of the normal approximation” for small samples,
Monte Carlo simulations can be performed to approxi-
mate the exact distribution.

The test statistics defined above can be used to inves-
tigate the presence of different birth-cohort trends. Evi-
dence of variation in risk by birth cohort is obtained
when two disjoint blocks of birth cohorts differ
considerably in the number of decreases observed in
comparisons made over the same calendar year interval.
For example, Z, may indicate a significant excess of
decreases in one block of birth cohorts and a significant
deficit of decreases in a second block of birth cohorts®. In
general, the variation between blocks of birth cohorts
will not be as dramatic as that observed in the breast-cancer
example and the statistic Zy, p, Will be a better statistic
for routine evaluation of potential birth-cohort trends.

In order to avoid artifact differences, induced by
changes in calendar-period trends, comparisons of dis-
joint blocks of row sums in the cohort—period—change
matrix will be restricted to the A—P+1 rows represent-
ing birth cohorts for which all P—1 comparisons
between adjacent calendar periods are possible (i.e.
eliminating comparisons in the upper and lower triangle
region comprising the first P—2 and last P—2 rows in a
cohort-period—change matrix, such as Table 2). The
upper and lower triangular regions of the cohort— peri-
od—change matrix must also be eliminated when evalu-
ating changes in calendar-period trends based on
comparisons of disjoint blocks of column sums.
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Table 10 Comparison of approximate two-sided significance levels based on the uncorrected and continuity corrected test statis-
tics, Zp, for blocks of seven consecutive birth cohorts, compared over 10 congecutive calendar year periods

Simulated
probability”

1.000
0.719
0411
0279
0.149
- o0m
0030
oo
S 3X103

Observed number of
_ decreases®

3lor32:.
300r33 "
290134
28or35
270136
26 or 37
S 250r38
24 or 39
Bord0
 2erd2

aThe distribution is symmetric about the mean value of 31.5.

CnIxwt
oo2ax10t

Corrected
statistic v
1000
0720
0473

0281

0151
L0072

0031
0012

o soxie?
12x10%

Uncorrected
- statistic

0857
059
~0.369
0209
o od06
oo
0019
0007
o 23x10%
o eaxiot

bMonte Carlo estimate of the exact probability based on 5 000 000 randomly-generated pseudo-samples.

Test for interactions

Another use of the test statistic, Zpi o is to investigate
the presence of age—calendar-period interactions. As
noted earlier, different trends in risk among different age
groups can give the appearance of variation in risk
among birth cohorts. To motivate the approach, consider
the patterns in Tables 4 and 5. If there is a bona fide
change in the birth-cohort trend, the situation represented
in Table 4, there should be evidence of the change in
every age group affected by the change in trend. Exami-
nation of comparisons within the middle age group in
Table 4 (i.e. the middle three diagonal rows) indicates
that all six of the table entries in or above the sixth hori-
zontal row are ones, while all six of the table entries
below the sixth horizontal row are zeros. That is, within
any age group spanning a bona fide change in cohort
trend, there should be evidence of that change in analy-
sis restricted to that age group. In Table 5, however, the
same analysis shows that 50% of the six shaded table
entries in or above the sixth horizontal row are ones, as
is the case for the six shaded entries below the sixth
row. Thus, stratification by age eliminates the apparent
evidence of a change in cohort trend.

Accordingly, the test statistic Zy, p, can be used to
rule out an age—calendar-period trend interaction. Sup-
pose significant differences have been found between
disjoint blocks of birth cohorts and let R be the block
providing strongest evidence of the trend change. Con-

sider the age blocks corresponding to different decades
of age. For any such age block, denoted B, which inter-
sects the block R of birth cohorts, determine the number
of decreases in the age block among birth cohorts pre-
ceding R, among birth cohorts in R and among birth
cohorts following R. The statistic Zy, p, can be used to
test for differences within each age group between the
comparisons within R and those preceding and/or fol-
lowing R. If the variation in rates is due to a change in
the birth-cohort trend, the proportion of decreases in the
intersection of blocks R and B should differ from the
proportion in B among cohorts preceding or following
R. If the proportions are homogeneous within age
blocks and, moreover, there is evidence of heterogeneity
among age blocks, then the variation in rates may be
due to age—period interactions.

Issues related to block size

The size of the blocks of birth cohorts to use in the non-
parametric analyses is an important consideration. If the
chosen size of the blocks is too small, there may be
problems with multiple comparisons; if the size is cho-
sen too large, important trends may be obscured. Based
on previous studies of breast cancer, blocks of eight
birth cohorts were used in the previous application of
the nonparametric method, to investigate trends in
breast cancer among US Caucasian females during
1969-88°. Birth-cohort blocks of size eight provide a
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reasonable compromise for comparisons over 30 age
intervals and 10 calendar periods, so we will continue to
use blocks of this size in the examples given below.

Our interest is in separating period trends from birth-
cohort trends, we therefore restrict the initial compari-
son of birth-cohort blocks to those birth cohorts for
which comparisons can be made over all 10 calendar
periods. In Table 2 there are 16 such blocks of eight
consecutive birth cohorts so a conservative Bonferroni
adjustment for multiple comparisons using the statistic
Z can be obtained by multiplying the p value for each
block of cohorts by 16'2. Similarly, there are 45 possible
comparisons of two disjoint blocks of eight birth cohorts
among the 23 birth cohorts with comparisons over all 10
calendar periods, so a conservative multiple compar-
isons adjustment for Zg 1Ry €an be obtained by multiply-
ing the observed p value by 45. If the number of age
intervals is large, the Bonferroni adjustment may
be extremely conservative, and, in such a situation,
Monte Carlo simulations can be performed to
better approximate the exact significance level of the
observed difference.

Applications of approximate methods

US male lung cancer mortality rates, R;. ko are given in
Table 6 from 1970 to 1989 for ages 24-83. The corre-
sponding cohort—period—change matrix is presented in
Table 7. Examination of Table 7 reveals predominantly
rate increases (i.e. zeroes) in the bottom of the matrix
and predominantly rate decreases in the top of the
matrix. Comparing the block of birth cohorts with the
most decreases (i.e. 1931-45) with the block of cohorts

with the fewest decreases (i.e. 1903-17) yields Zpypo =

Table 11 Analysis by decade of age for male lung cancer

tNumber of decreases (D

 biheohorts

T : ‘_Vanance (Vm) ’
After the;~1’93:1:—45k : Number of comparlsons (TRZ)" ;
. birth cohorts Number of decreases (DRZ) :
‘ Bret - Variance (Vg,) :
L . Zyira cn
' Before the 1931-45 Number of comparisons (Ty,)
birth ycohor[s' Number of decreases (D)

Variance Vg

,ZRI,R3
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—9.017 (p < 1079). Using the conservative adjustment
for multiple comparisons, any value of ZRl R €Xceeding
3.26 in absolute value is significant at the nominal 5%
level. Thus, the lung-cancer data exhibit clear evidence
of heterogeneity among birth cohorts.

Three 10-year age intervals intersect the 1931-45
block of birth cohorts (i.e. 30-39, 40-49, and 50-59
years of age). Among 30-39-year olds, there were 25
comparisons within the block of birth cohorts of which
72% gave decreases and 20 comparisons after the block
of birth cohorts of which 70% gave decreases. Compari-
son of these percentages (Table 11) yields Zey R =
—0.18 (p = 0.86). Thus, there is no evidence of hetero-
geneity in men born in cohorts after the 1931-45 block
and among men born within the block. Among 40-49-
year olds, there were 29 comparisons within the block
of birth cohorts, of which 93% gave decreases, and 15
comparisons before the block of birth cohorts, of which
40% gave decreases. Comparing these percentages
(Table 11) yields Zg pz = 433 (p = 1.5X107%). Among
50-59-year olds, there were six comparisons within the
block of birth, all of which gave decreases, and 39 com-
parisons before the birth cohort, of which 41% gave
decreases. Comparing these percentages (Table 11)
gives Zp, py = 3.27 (p = 0.001). Thus, within both the
4049 and the 50-59- -year age group, the change in
trend in lung-cancer mortality rates appears to be a
cohort change, starting with men born in the late 1920s.
The presence of highly significant birth cohort effects in
lung-cancer mortality has been reported previously
based on Poisson age~period—cohort modeling!3 and our
analysis suggests that the abrupt change in lung-cancer
risk is predominantly a birth-cohort phenomenon and

14 ,
2500
—0.178 : i
" 5 39
6 16
208 4083

4330 3266
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does not result from age—calendar-period interactions.

The apparent change in birth-cohort slope beginning
around 1930 can be evaluated using the parametric con-
trasts given in Appendix 2 of an earlier paper! to com-
pare the birth-cohort trend from 1903 through 1917 with
the birth-cohort trend from 1931 through 1945. Substi-
tuting the maximum likelihood estimators for the 7y’s
based on Poisson regression analysis of the full
age—period—cohort model using the lung-cancer data
gives C; = —0.614 with an estimated standard error
(SE) = 0.0254, and C, = —7.147 with an estimated SE
= (.226. Thus, both parametric contrasts provide strong
evidence of the moderation of lung-cancer risk begin-
ning with birth cohorts around 1930.

Although identification of short-term changes in
trend is problematic, because of the multiplicity of pos-
sible comparisons in any cohort-period—change matrix,
it is interesting that the lung-cancer birth-cohort trend
turned negative from 1913-17, briefly interrupting a
relentless increase in lung-cancer risk with successive
birth cohorts. The sum of 14 for the 1913-15 and
1915-17 rows differs significantly from the sum of one
observed for both the immediately preceding and fol-
lowing pairs of rows (p = 3X10~* adjusted for the 190
possible comparisons of disjoint blocks of size two).
Both permutational approaches indicate that a maximum
difference of 13 would be significant for all compari-
sons of pairs of disjoint rows (p = 107* for Method 1
andp = 0.003 for Method 2), so the observed decrease
in birth-cohort risk from 1913-17 is highly unlikely to
be due to chance. .

Now consider leukemia mortality rates for US Cau-
casians from birth to age 69. Table 12 gives the
cohort—period—change matrix for leukemia mortality.
Although there is no dramatic difference between blocks
of birth cohorts, the comparison of the block with the
largest number of decreases (i.e. 1957-71) with the
block with the fewest number of decreases (i.e.
1917-31) yields Zg, g, = 3.43.

There are 35 age groups in the leukemia example,
resulting in 105 possible comparisons of disjoint blocks
of eight consecutive birth cohorts, and use of the con-
servative multiple comparisons adjustment indicates
only marginal significance (p = 0.06). Monte Carlo
simulations reveal that the observed extreme difference
between the blocks of birth cohorts is, in fact, signifi-
cant (p = 0.023). Poisson regression analysis indicates
significant birth-cohort effects (p < 107, details not
shown), suggesting the need for further investigation of
the birth-cohort pattern of risk.

Three 10-year age groups intersect the 1957-71
block of birth cohorts (i.e. 0-9, 10-19 and 20-29 years
of age). Among 0-9 year olds there were 15 compari-
sons within the 1957-71 block of birth cohorts, of

which 87% gave decreases, and there were 30 compari-
sons after the block of birth cohorts, of which 80% gave
decreases. Comparison of these percentages (Table 13)
gives Zg |z, = 0.55 (p = 0.58). Among 10-19 year olds
there were 33 comparisons within the block of birth
cohorts, of which 76% gave decreases, and six compari-
sons after the block, of which 83% gave decreases.
Comparison of these percentages yields Zy, 5, = —0.41
(p = 0.68). Similarly, comparison of percentages before
the 1957-71 birth cohorts with those within the block of
cohorts (Table 13) showed no significant difference for
10-19 year olds (p = 0.62) or for 20-29 year olds (p =
1.0). Thus, in none of the three age groups intersecting
the 1957-71 birth cohorts is there any evidence of a
change in trend with birth cohort. There is, however,
evidence of heterogeneity among age groups. The per-
centages of decreases by decade of age are 82% for 0-9,
76% for 10-19, 60% for 20-29, 67% for 30-39, 60%
for 40-49, 56% for 50-59 and 49% for 60-69. The dif-
ference in the percentages between the oldest and
youngest decades of age is highly significant (p < 1079),
so the apparent birth-cohort effects can be explained
largely by age—calendar-period interactions.

Discussion

The nonparametric methods proposed above allow
model-free inferences regarding changes in trends in
disease rates with birth cohorts, or calendar periods.
Although such second-order effects are customarily
considered to be of secondary importance to first-order
effects, they can, nonetheless, have important interpret-
ations regarding disease aetiology!. The nonparametric
method can serve as a data analytic adjunct to the para-
metric, Poisson modeling methods, usually employed
for age-period—cohort analyses, useful either in the
model-building stage, or in the interpretation stage. As
illustrated in the examples, the method can detect
changes in the slope of trends in disease risk with birth
cohort and provides a means for investigating age-
calendar-period interactions. When inferences can be
made using the nonparametric analysis, they have the
advantage of being model-free.

There are situations in which the nonparametric
method may have poor efficiency. In examples in which
all age-specific disease rates show striking, monotone
trends throughout the study period, the cohort—
period-change matrix will consist of almost entirely
zeros or ones (e.g. for stomach cancer mortality). This
gives little variation in row sums (or column sums) of
the cohort-period—change matrix. No calendar-period
pattern of risk (excluding interactions) can induce the
pattern of differences in the row sums of a cohort—
period—change matrix, evaluated by the nonparametric
method to test for changes in the birth-cohort trend.
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Table 12 Cohort—period change matrix for two-year data on US white leukemia mortality

cohorts ottt e

 compared 71 723 745 767 789

198710 1985

However, the efficiency of the nonparametric test for
birth-cohort trends can be affected by the pattern of
calendar-period risk. That s, in the presence of power-
ful calendar-period patterns of risk, birth-cohort trends
in risk may not be detectable using the nonparametric
approach. Birth-cohort patterns tend to be more domi-
nant than calendar-period patterns in cancer research

to

and thus the nonparametric method has been useful in
evaluating cancer trends. For example, the nonpara-
metric method detected important birth-cohort trends in
analyses of US breast-cancer mortality rates®!9, in spite
of strong and significant calendar-period trends in risk!4,
Nonetheless, the nonparametric approach has limitations
and, for situations in which the log-linear modeling of
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Table 13 Analysis by decade of age for leukemia

vW1th1n the 1957—-7 1 : : ,"Number of compansons (TRI) :

: blI‘th cohorts . Number of decreases (DR1)
- oy 'v'/fVanance (Vm) : ;
Pl After the 1957—71 o f"‘,:Number of compansons (TRZ)_ :
buth cohorts : i aNumber of decreases (DRZ)

o Vanance (Vm)

o Befyoﬁr’c,theﬂi 1957—71 ﬁ

age-period—cohort effects is appropriate, parametric
evaluation of trends in birth cohorts or calendar periods
using Poisson regression analysis, with appropriately
chosen identifiable parameters, will provide a more
powerful approach to detecting trend changes. Para-
metric methods should also be performed to verify and
quantify changes in the slope of trends in disease risk
identified by the nonparametric approach!. Despite limi-
tations, however, the nonparametric method developed
in this paper can be a useful data-analytic tool in exam-
ining trends in disease risk.

Application of the nonparametric method to US male
lung-cancer mortality rates demonstrated a striking
moderation in risk, beginning with men born in the late
1920s. As Brown and Kessler have noted, this decrease
in lung-cancer mortality can be explained by a down-
ward trend in the prevalence of smoking in young men,
which occurred as the adverse health effects of smoking
became evident and were publicised!®. The apparent
brief decrease in the birth-cohort trend, indicated for
men born 1913-17, probably resulted from an economi-
cally-induced decrease in the percentage of young men
who began smoking during the early years of the Great
Depression (1930s). Although the Depression had a
marked impact on the trend of cigarette consumption'>,
the nonparametric analysis of lung-cancer presented in
this paper is the first analysis to note any consequences
of this reduced cigarette smoking on lung-cancer risk.

Application of the nonparametric method to US
leukemia mortality-rates indicated that what appeared to

10-V'Vy‘é‘ark age groups
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be a strong change in the slope of the birth-cohort trend
could be explained largely by heterogeneity in mortality
trends among different age groups. That is, mortality
rates are decreasing more rapidly in patients < age 20
than in patients > 40. This disparity is due to recent
advances in chemotherapy, which have resulted in
greater improvements in prognosis for young leukemia
patients than for older leukemia patients!®17,

Appendix
Age-specific permutation dlstrlbutlons underlying

the first approach
For the age interval indexed by i, the number of de-
creases over n+ 1 consecutive time-periods is given
by S, = 2 N, where the index corresponding to birth
cohort has been suppressed and summation is over the n
consecutive integers denoting the time-period compar-
isons under consideration. Under the null hypothesis,
E(Ni,r) = 1/2 for all 1, so that E(S,) = n/2. The variance
of §, is given by:

v, = & variance(N; ) + 2X X, covariance (N,

1r’Ni,t)

where the summations again are over the z# consecutive
integers denoting the relevant time periods. The vari-
ance of each N, is equal to 1/4 and the covariance terms
are all equal to zero except in the n—1 cases in which
t = r+1. Under the permutational distribution, the
product N; N. _ takes the value one, with probability 1/6

ir i+l
(of the six p0s51ble permutations of the integers 1, 2, and 3
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only the outcome 3, 2, 1 results in two decreases), and
the value zero, with probability 5/6. Thus, E(N, N. D

i i+

= 1/6 and covariance:(Ni’r,Ni’r +1) = —1/12. Thus,
v, = n/4 — 2(n—1)/12 = (n+2)/12

Variance of the difference in proportions

In deriving the variance, VRI,RZ’ for the difference in the
proportion of decreases between two disjoint blocks of
comparisons in the cohort-period—change matrix, that
is, PRI—PRZ = D /Tgy — Dy,/Tr, a covariance term
enters in if the blocks have adjacent rows. This will
always be the case, for example, in applying the method
to investigate age—calendar-period interactions. In such
cases, Ni’r will be included in one block and le will
be included in the other block for some i and some r.
Letting U denote the number of such occurrences for R1
and R2, the variance of the difference, P.,—P
given by:

R 18

Virige = Vri/Ti + Vio/Tis+ Ul (6T Ty,)

where Vi the variance of Dy, has been derived in the
text. '
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