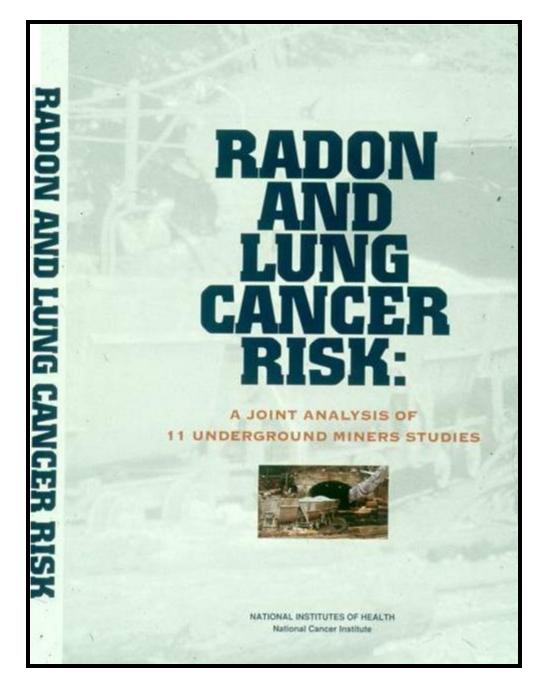
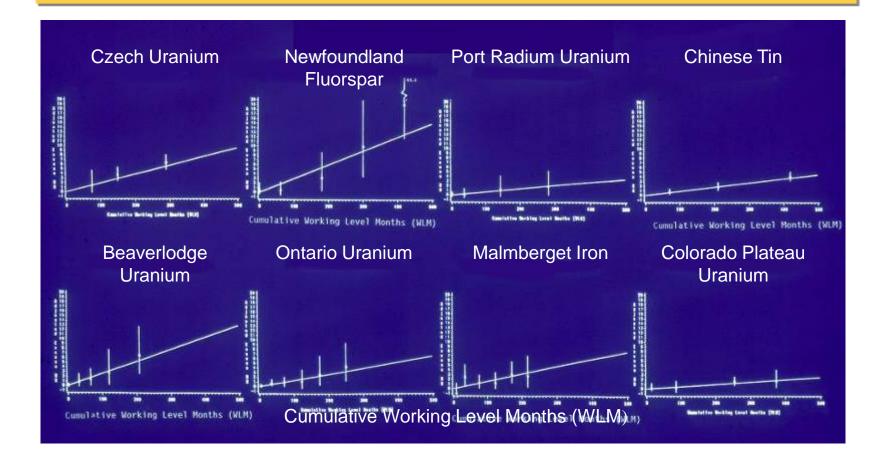
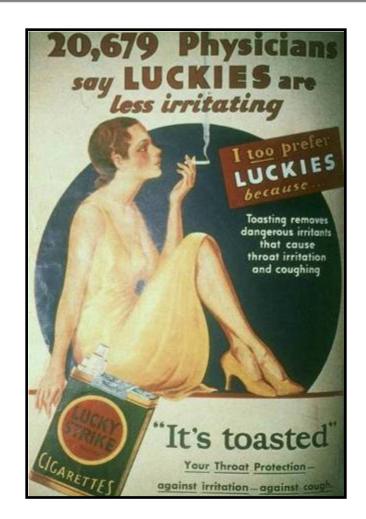
John D. Boice, Jr., Sc.D. President, National Council on Radiation Protection and Measurements (NCRP), and Professor of Medicine, Vanderbilt University School of Medicine


Radiation Studies and Concepts II

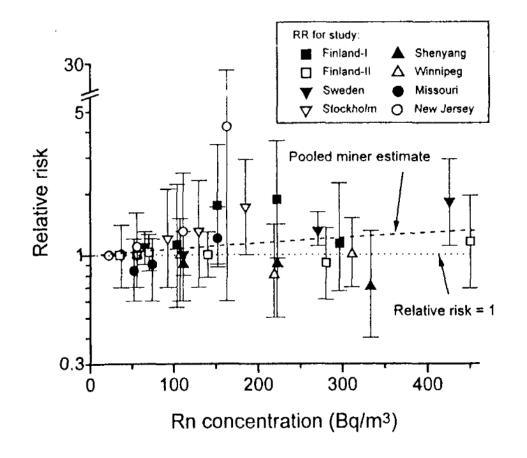
Radiation Epidemiology & Dosimetry Course


National Cancer Institute

www.dceg.cancer.gov/RadEpiCourse


Lung Cancer Dose Responses in Miners Consistency in the Epidemiology

The Study Team - 1992


Radon Interacts with Smoking to Enhance Risk

A nearly multiplicative interaction

NRC, BEIR, 1999

Indoor Radon Meta-Analysis 4,263 Lung Cancers

Difficult to detect low-dose risks, yet significant trend when studies combined!

Lubin & Boice, *JNCI*, 89:49, 1997

 $4 \text{ pCi/l} = 150 \text{ Bq/m}^3$

Featured in Junk Science

Photo: D.Creigh

What will the RADdler do with this new junk science? Is the Dynamic Duo too late? How do Samet, Lubin and Boice sleep at night? Will they ever get a life and forget about radon?

RADdler - a radon epidemiologist and descendant of the notorious criminal "Riddler"

Batman: Good work Robin. I et's see... a-ha...I ubin and Boice have concluded that by combining the radon epidemiologic studies together through a metaanalysis, "a lot of nothing" can become "something!" Lubin and Boice used the meta-analysis technique to report that higher levels of radon exposure increase the risk of lung cancer by a statistically significant 14 percent. Then Samet, the King of Radon, blessed the report in his editorial!

Robin: *What... what's a meta-analysis?*

http://junksciencearchive.com/news/batman.html

Radon Studies in Homes (Case-Control)

United States

- $\sqrt{New Jersey}$
- √ Missouri lowa Connecticut Utah/Idaho
- Canada Winnipeg
- Europe Southwest England Western Germany Czech (cohort)

BEIR VI, 1999; Field, Rev Envir Health 16, 2001

Nordic Countries

√ Sweden Finland

China $\sqrt{\text{Shenyang}}$ √ Gansu

Pooled

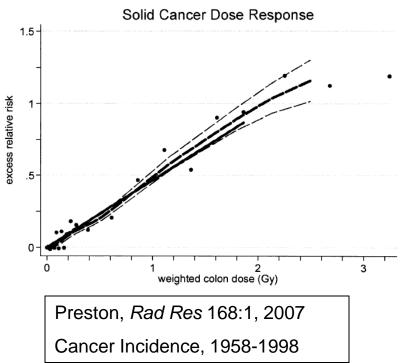
√ Lubin (1997, 1999) North America (Krewski, 2005) Europe (Darby, 2005)

 $\sqrt{\text{China}}$ (Lubin, 2004) World (Darby, in progress)

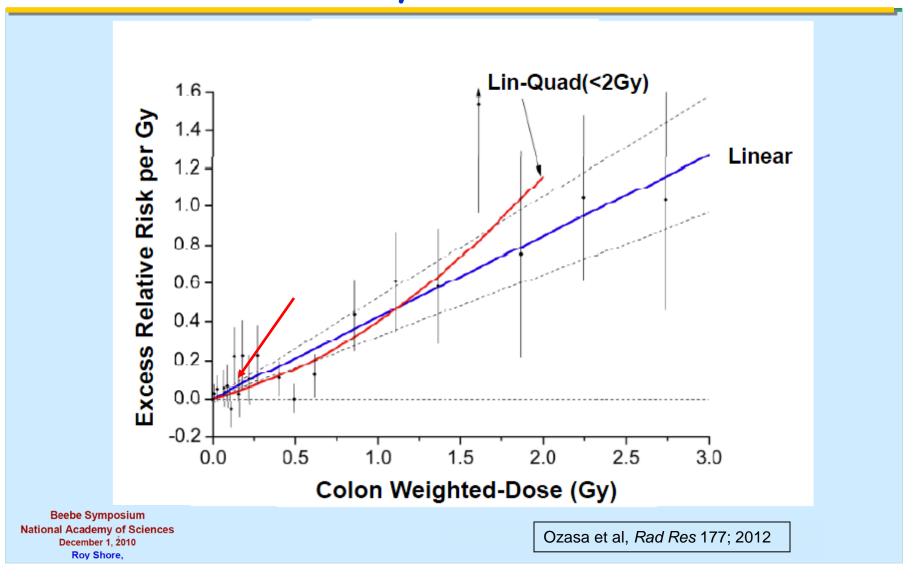
- Residents in the Center Valley area are urged to have radon tests done in their homes after recent testing revealed "record high" levels.
- Several homes had radon levels of over 1,000 picocuries per liter (pCi/L). One specific home tested at 2,750 pCi/L and is the one of the highest radon values ever recorded in the state. (Nov 2014)
- Pennsylvania has one of the most serious radon problems in the country.
- An estimated 40 percent of Pennsylvania homes have radon levels above Environmental Protection Agency's action guideline of 4 picocuries per liter.

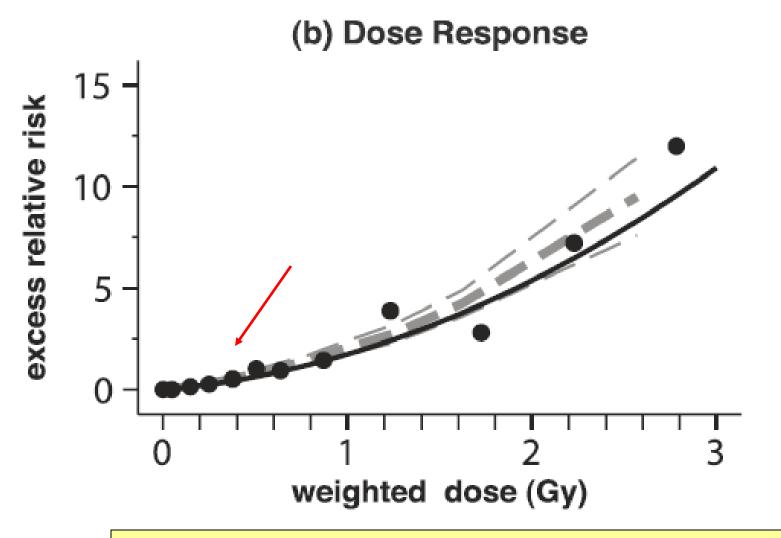
Center Valley home registers highest radon level ever in Pennsylvania

- Japanese Atomic Bomb Survivors
- Pooling Thyroid
- Pooling Breast



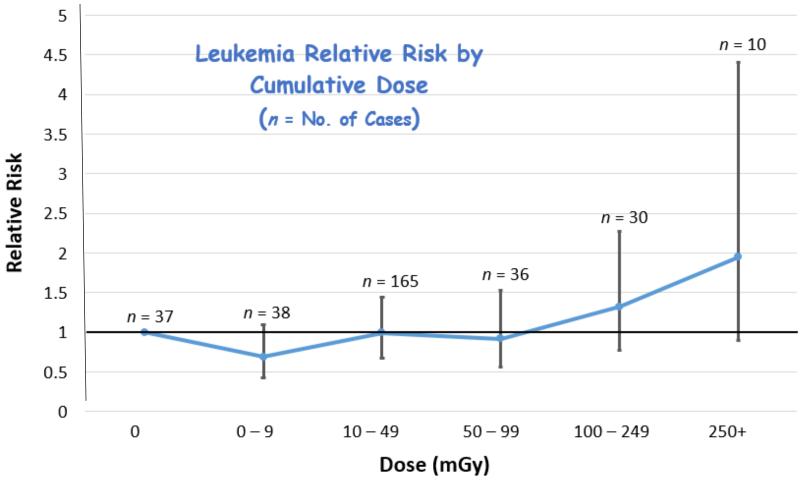
Epidemiologic Studies are the Basis for Cancer Risk Estimates.


"Radiation risk estimates are derived for incidence data for specific tumour sites when adequate dose response data are available from the Japanese Life Span Study (LSS), pooled analyses of multiple studies, or other sources." ICRP Publ 103, 2007


1945, Japan, war torn, acute exposure

LSS Dose Response for Solid Cancer Mortality, 1950-2003

LSS Leukemia (other than CLL) Dose Response


Nonlinear dose response. Much higher risk coefficient than solid cancer. Excess occurs early. Hsu et al. Radiat Res 2013.

Nuclear Utility Worker Dose Distribution Preliminary (REIRS & Landauer)

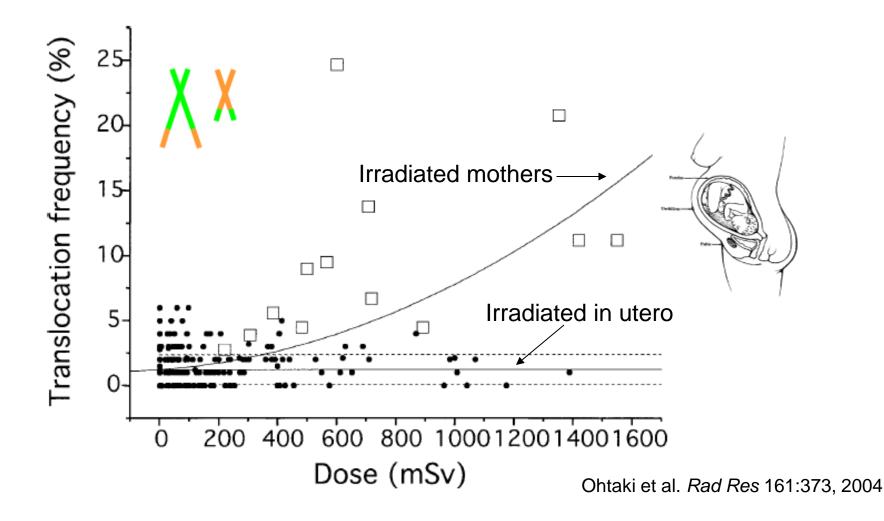
	Lifetime dose	Frequency	Percent
	(mSv)		
	< 10 *	30,764	20.7
	10 – 49 *	77,383	52.0
	50 – 99	21,578	14.5
	100 - 499	18,846	12.7
	500 - 999	322	0.2
	> 1,000	22	<0.1
	Total	148,915	

*Sampled < 50 mSv

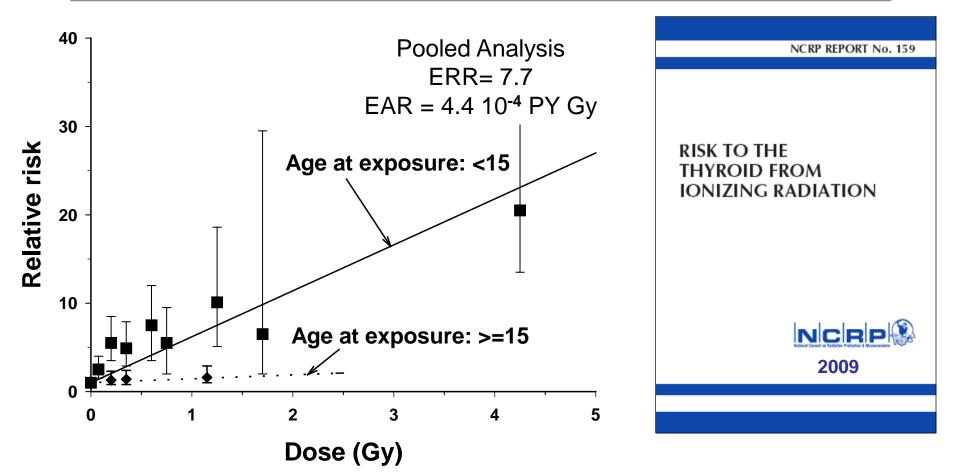
Leukemia (other than CLL) among 150,000 U.S. Nuclear Power Plant Workers - Preliminary

347 Leukemias among nuclear power plant workers

121 Leukemias among adult A-Bomb survivors

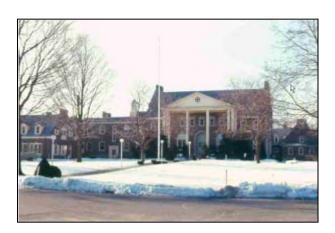

Atomic Bomb Survivors In Utero & Post-Natal Cancer Risk

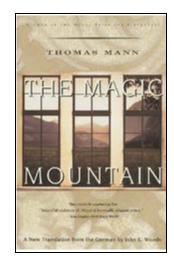
Preston et al. JNCI 100:428, 2008


No Dose-Response for Chromosome Aberrations after *In Utero* Exposure, RERF

Thyroid Cancer after Exposure to External Radiation: A Pooled Analysis of Seven Studies

Thyroid Cancer & External Radiation Risk Dose Response by Age at Exposure


Ron E, Lubin J, Shore R et al, Thyroid cancer after exposure to external radiation: A pooled analysis of 7 studies. Radiat Res 1995


#5 On the Hit Parade !

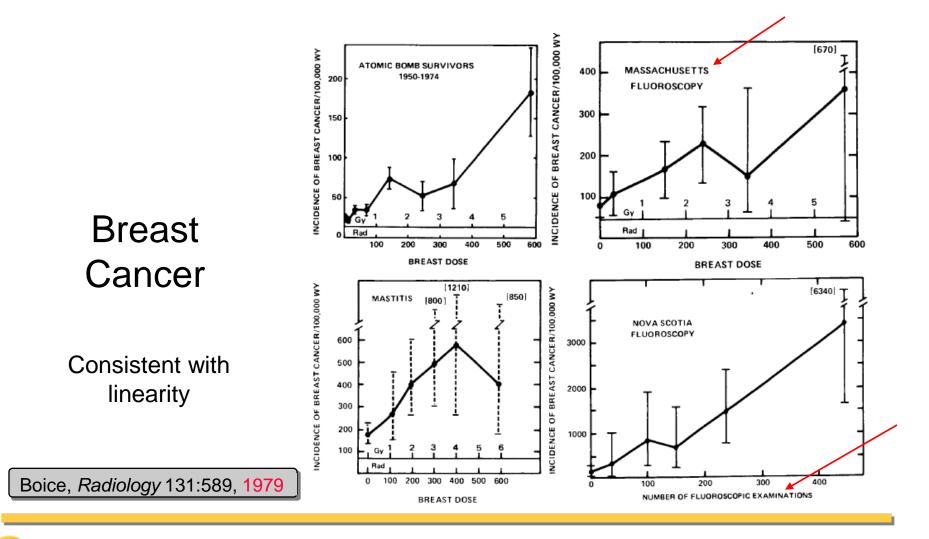
Radiation Research 1952–2012 Top 100 Articles


Studies of Low-Dose Exposures Accumulating to High Dose

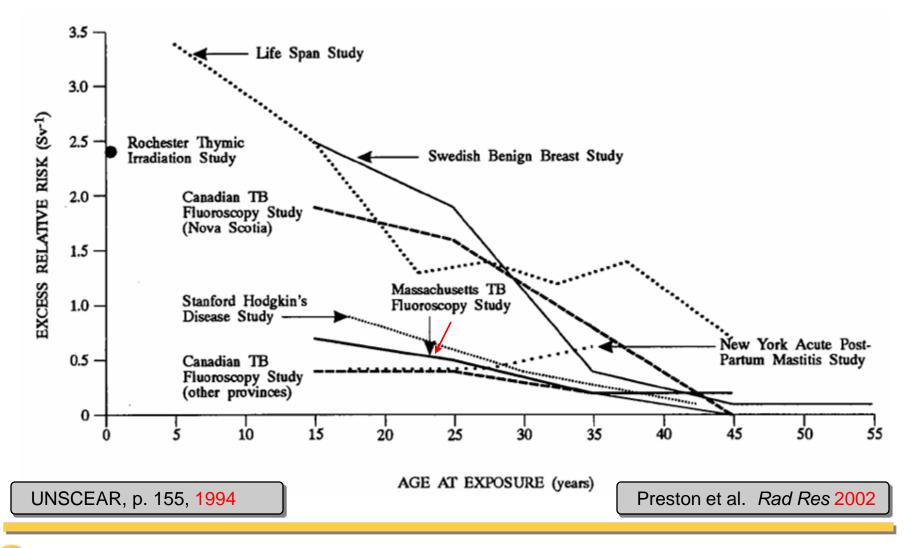
Lung collapse therapy for tuberculosis and associated multiple chest fluoroscopic x-rays (1930-1954)

Breast Cancer TB - Fluoroscopy, Massachusetts

	Exposed	Nonexposed
No. of women	2,573	2,367
No. chest fluoroscopies, ave	88	
Dose (ave) [Dale Trout]	790 mGy	
Breast cancers		
Observed (O)	147	87
Expected (E)	114	101
O/E	1.29	0.86
	29% Excess	
	ERR/Gy ~ 0.4	
		VELSE


Boice et al, *Radiat Res* 126:214, 1991 Boice & Monson, *J Natl Cancer Inst* 59:823 1977

Radiation Effects on Breast Cancer Risk: A Pooled Analysis of Eight Cohorts



Dose Response – Pooled Analysis of Breast Cancer Studies

Age at Exposure Radiation-Induced Breast Cancer Studies

Lung and Leukemia TB - Fluoroscopy, Massachusetts

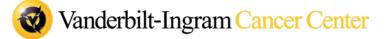
	Lung	Leukemia
No. exposed	6,285	6,285
No. unexposed	7,100	7,100
No. chest fluoroscopies (ave)	77	77
Dose to lung or marrow	840 mGy	90 mGy
Observed (O)	69	17
Expected (E)	86	19
RR (95% CI)	0.8 (0.6-1.0)	<mark>0.9</mark> (0.5-1.8)

No excess lung or leukemia

Davis et al, Cancer Res 49:6130, 1989

Not all tissues respond similarly to fractionation.

Vanderbilt-Ingram Cancer Center


Lung Cancer - Canada TB - Fluoroscopy vs Atomic Bomb

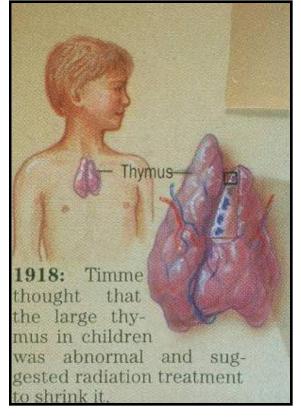
	Relative Risk by Lung Dose (mGy)						ERR/Gy (95% CI)
/	<10	10 -	500 -	1,000 -	2,000 -	3,000 -	
Multiple fluoroscopy	1.0	0.87	0.82	0.94	1.09	1.04	0.00 (-0.06, 0.07)
Atomic bomb	1.0	1.26	1.45	1.93	2.65	—	0.60 (0.27, 0.99)
	Numbers of Lung Cancer by Lung Dose (mGy)						
	<10	10 -	500 -	1,000 -	2,000 -	3,000 -	-
Multiple fluoroscopy	723	180	92	114	41	28	I
Atomic bomb	248	290	38	30	10	3	-

Howe, G. (1995). Radiat. Res. 142, 295

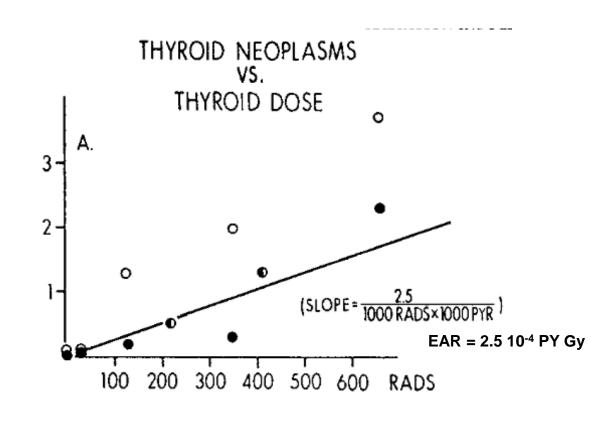
- Tissues respond differently to the effects of fractionated doses
- Age at exposure modifies effect
- Be cautious when generalizing one size doesn't fit all – all models are wrong, some are useful

Hall of Fame (1950-1970s)

- Thymus
- Tinea Capitis
- Hemangioma
- I-131
- Tuberculosis



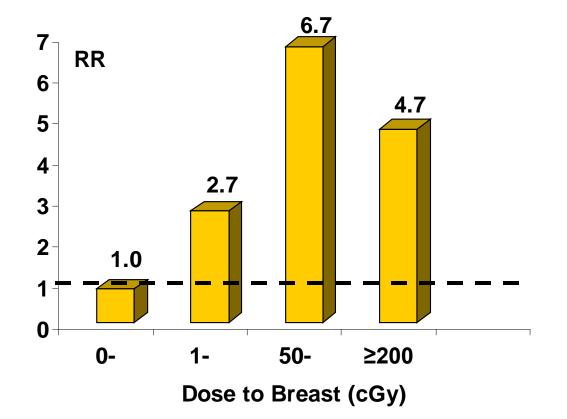

Thyroid Cancer Thymus Irradiation


In 1950 Robert W Miller MD was assigned by Atomic Energy Commission to University of Rochester. In his Memoriam to Hempelmann (1993) he wrote:

"In 1950 he [Hempelmann] joined the faculty at the University of Rochester as an Associate Professor of Experimental Radiology. Benedict Duffy, who came to a neighboring department soon after, had just published on a case-series of 28 children who had developed thyroid cancer. Surprisingly, 10 had received thymic radiotherapy as infants.

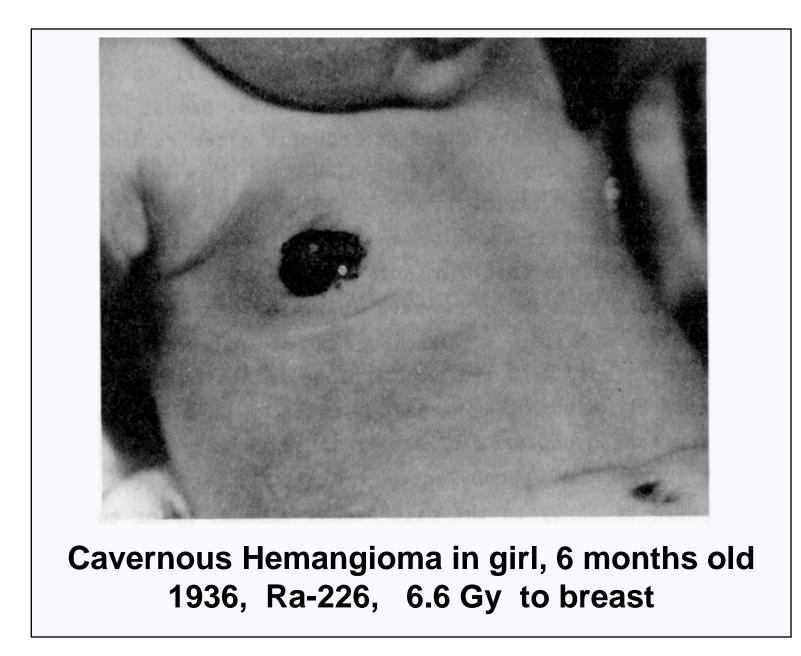
Incidence of Thyroid Neoplasm (Hemplelmann et al. *Science* 1968; JNCI 1975)





Louis Hempelmann with J Robert Oppenheimer

Update: Adams et. al. Rad Res 2010


Breast Cancer Thymus Irradiation

Hildreth et al, *NEJM* 321:1281, 1989

Immature breast tissue at risk but risk manifests many years later.

Lundell et al Rad Res 1999

Breast Cancer After Infant Exposure Dose Rate Reduction (DDREF = 7)

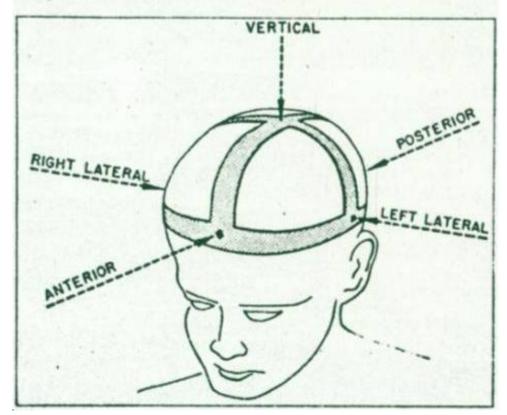
Study Exposure	Breast Dose (Gy)*		nber Breast Ca	Excess Risk (10 ⁴ WY- Gy)
Thymus High-dose-rate X-rays	0.7	3,312	34	34.0
Hemangioma Low-dose-rate Gamma radiation	0.4	17,082	226	5.1

*Ranges (0.02-7.5 Gy) & (0.02-35 Gy)

Preston et al, *Radiat Res*, 158:220, 2002

Consistent with a *low dose rate* having a smaller effect

Eidemüller M et al. Mutat Res. 2015 May--Risk estimates are a factor of 2 higher as a consequence of dosimetry re-evaluation.



Radiotherapy for Ringworm 5 treatments, 3-12 minutes each

Fig 1.—Five Treatment fields used in the Adamson-Kienbock treatment were positioned with the aid of a "cap" made from steel bands.

Albert et al AJPH 1968; Modan et al Lancet 1974

Brain Tumor Tinea Capitis - Israel

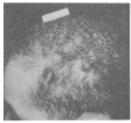


Figure 2---Generalized hair loss

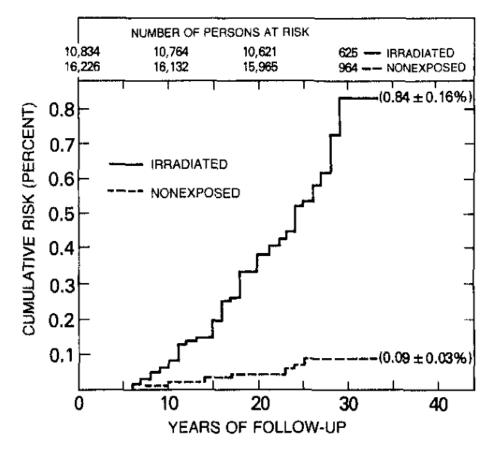
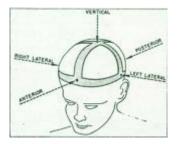
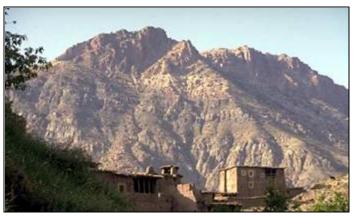



Figure 1. Cumulative Risk of Neural Tumors among Irradiated Subjects, as Compared with the Combined Control Groups.

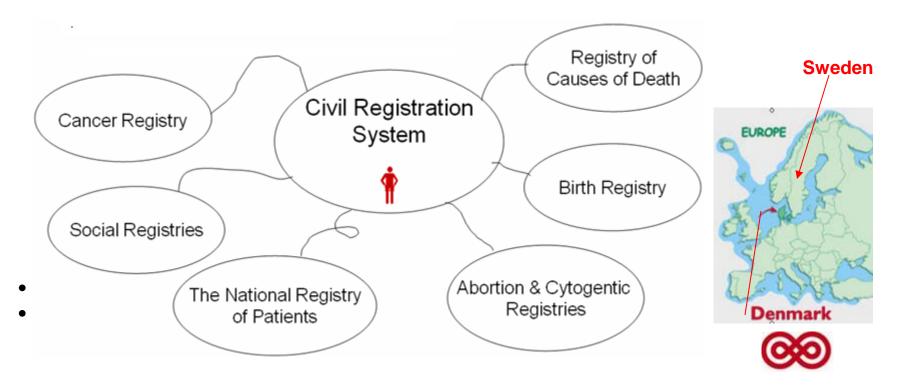
Ron et al, NEJM, 1988

Thyroid Tinea Capitis - Israel

Number Exposed:	10,834
Number Nonexposed:	16,226
Thyroid Dose (mean):	9 cGy
Observed Thyroid Cancers:	43
Expected:	10.7
RR (95% CI):	4.0 (2.3 - 7.9)


Ron et al, Radiat Res 120:516, 1989

Wiggle, Morocco, genetic


Some Uncertainties of Epidemiology...


- Effect primarily among immigrants, mainly from Morocco, not Israeli born (Ron, *Rad Res*, 1989)
- "Irradiation for tinea capitis was given to many Jews in Morocco prior to immigration..."(Modan, JNCI, 1980)
- Genetic susceptibility & family clustering (4 sisters thyroid disease)
- Wiggle could increase dose x 3
- Immigrants from Morocco came from Atlas Mt region, and diets deficient in stable iodine

Scandinavia - Epidemiologic Gold Mines

Kaiser J. Swedish bioscience. Working Sweden's population gold mine. Science. 2001

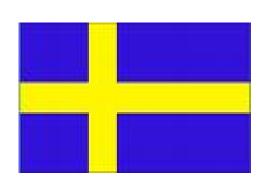
A Comprehensive Cancer Center Designated by the National Cancer Institute

Leukemia Incidence Swedish I-131 Studies

	Diagnostic I-131	Hyperthyroidism Therapy	Cancer Therapy
No. patients	36,326	9,860	802
Mean bone marrow dose (cGy)	0.02	4.8	25.1
Non-CLL No. cases SIR 95% CI	103 <mark>1.2</mark> (0.95-1.4)	25 <mark>0.8</mark> (0.6-1.2)	2 <mark>1.2</mark> (0.2-4.4)

Thyroid Cancer Swedish Diagnostic I-131 (Scans)

Number Exposed:	24,010
Years of Scans	1952-69
Thyroid Dose:	0.94 Gy (94 rad)
Observed Thyroid Cano	er: 36
Expected:	39.5
RR (95% CI)	<mark>0.9</mark> (0.6 - 1.3)


Dickman et al, Int J Cancer, 106:580, 2003

Hall et al, *Radiat Res*, 145:86, 1996

Confounding by Indication ?

 Thyroid cancer following I-131 scans for evaluation of suspected tumor in Sweden among 36,792 adults (ave thyroid dose 0.94 Gy)

Dickman PW, Holm LE, Lundell G, Boice JD Jr, Hall P. Thyroid cancer risk after thyroid examination with 1311: A population-based cohort study in Sweden. Int J Cancer 106(4):580–587; 2003.

We abstracted clinical data for all 36,792 patients, including thyroid size, I-131 activity administered and the reason for the examination. Holm et al. JNCI (1988)

Reason for I-131 Scan All Reasons

Reason for I-131	RR of Thyroid Cancer by Years After I-131 Scan				
Scan (No. Cancers)	2-	5-	10-	>20	All
All Reasons (105)	3.1*	2.5*	1.2	1.7*	1.8*

 Significant thyroid cancer risk overall (RR 1.8*)

Note that the adult thyroid gland is not considered radiosensitive.

Reason for I-131 Suspicion of Tumour

	RR of Thyroid Cancer by Years				
Reason for I-131	After I-131 Scan				
Scan (No. Cancers)	2-	5-	10-	>20	AII
All Reasons (105)	3.1*	2.5*	1.2	1.7*	1.8*
Suspicion of Tumour (69)	6.3*	4.8*	2.3*	3.5*	3.5*

• Risk very high when reason for Scan was a suspicion of tumour (RR 3.5*)

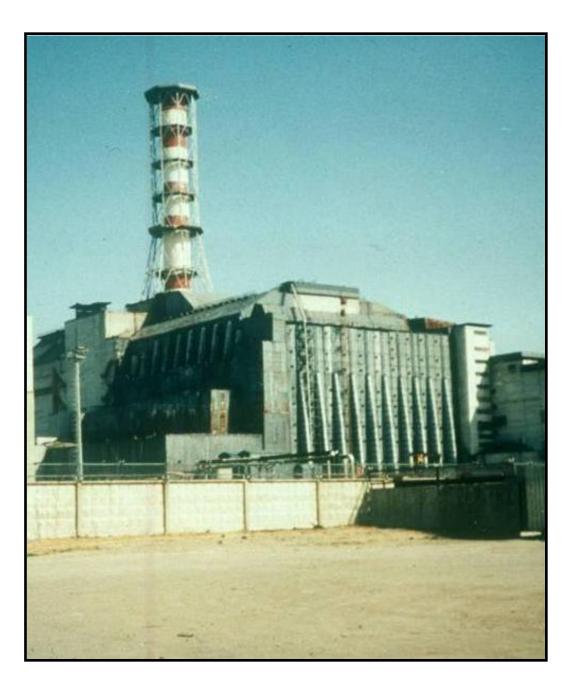
Reason for I-131 Other Than Suspicion of Tumour

Reason for I-131	RR of Thyroid Cancer by Years After I-131 Scan				
Scan (No. Cancers)	2-	5-	10-	>20	AII
All Reasons (105)	3.1*	2.5*	1.2	1.7*	1.8*
Suspicion of Tumour (69)	6.3*	4.8*	2.3*	3.5*	3.5*
Other Reasons (36)	1.3	1.5	0.6	0.9	0.9

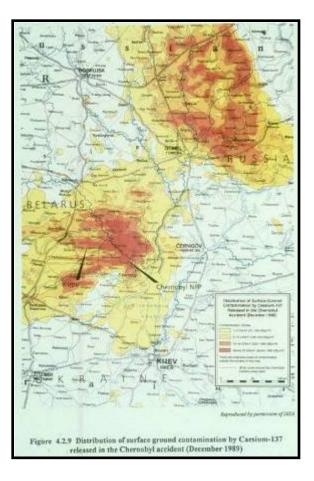
 No excess risk if Scan performed for "other reasons" (RR 0.9), e.g., hyperthyroidism and hypothyroidism.

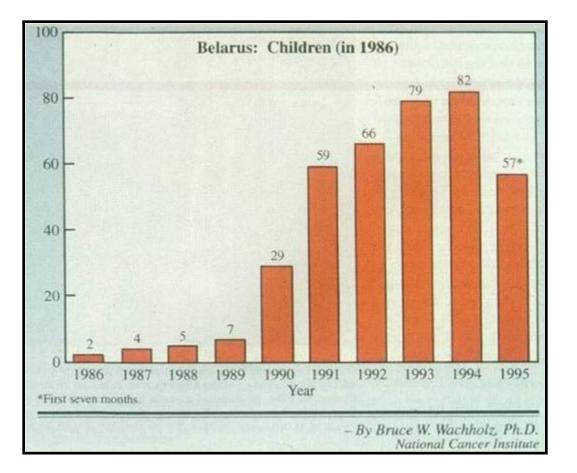
Reverse Causation Bias Lasted for More than 20 years after 131-I Exam

Reason for	RR of Thyroid Cancer by Years After Scan				
Scan (No. Cancers)	2-	5-	10-	>20	AII
All Reasons (105)	3.1*	2.5*	1.2	1.7*	1.8*
Suspicion of Tumour (69)	6.3*	4.8*	2.3*	3.5*	3.5*
Other Reasons (36)	1.3	1.5	0.6	0.9	0.9



The "suspicion of tumour" predicted future diagnoses of cancer even 20 years after examination
I-131 did not cause the thyroid tumors; the thyroid tumors caused the I-131 exams




Hits (1980 - 1990s)

- Chernobyl
- Hanford
- Mayak
- Hodgkin Lymphoma
- Retinoblastoma
- Childhood Cancer
- Rocketdyne (Atomics International)

Thyroid Cancers in Children in Belarus

Belarus Milk Japanese children - Fukushima Washington State

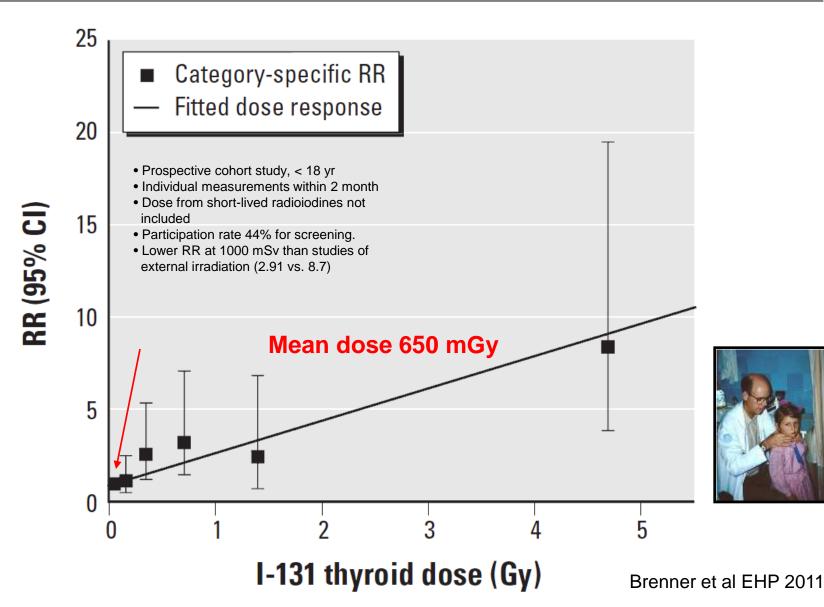
Thyroid Cancer (IARC 2005) Risk Varies by KI and Endemic Goiter

RR at 100 rad (95% CI)

Consumption of potassium iodide	Highest two tertiles of soil iodine	Lowest tertile of soil iodine	
Νο	3.5 (1.8 to 7.0)	10.8 (5.6 to 20.8)	
Yes	1.1 (0.3 to 3.6)	3.3 (1.0 to 10.6)	

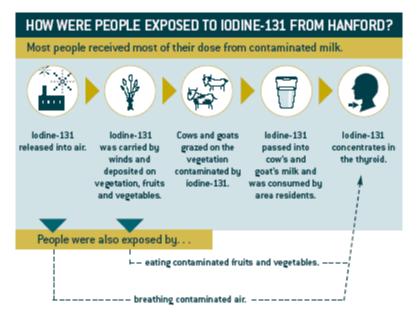
Lower risk seen among children with normal levels of stable iodine in diet.

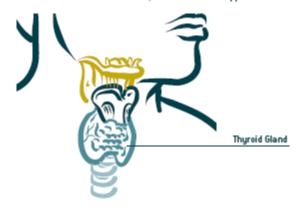
HDC 0037-0472-27 HTAD-BLOCK Tables Maxim holder Tables Maximum Collector Tables Maximum Coll


14 TABLETS

Cardis et al. JNCI 97:724, 2005

Boice JNC/ 97:703, 2005

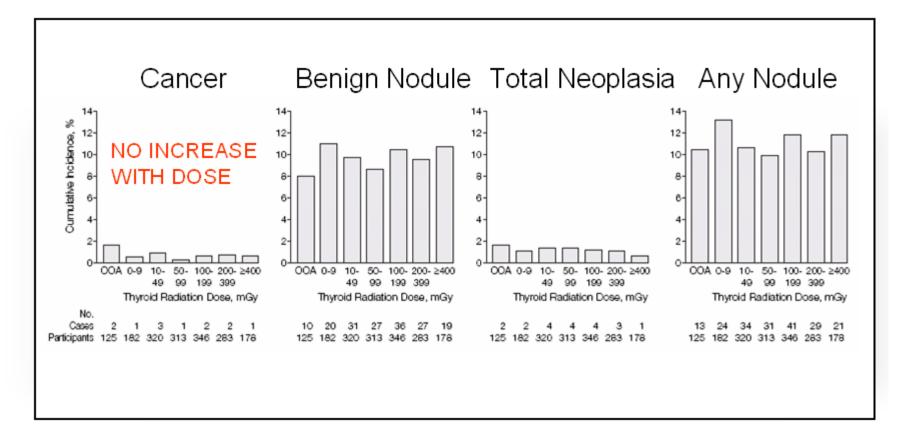

Ukrainian – American Chernobyl Thyroid Study



Hanford Thyroid Disease Study

THYROID GLAND

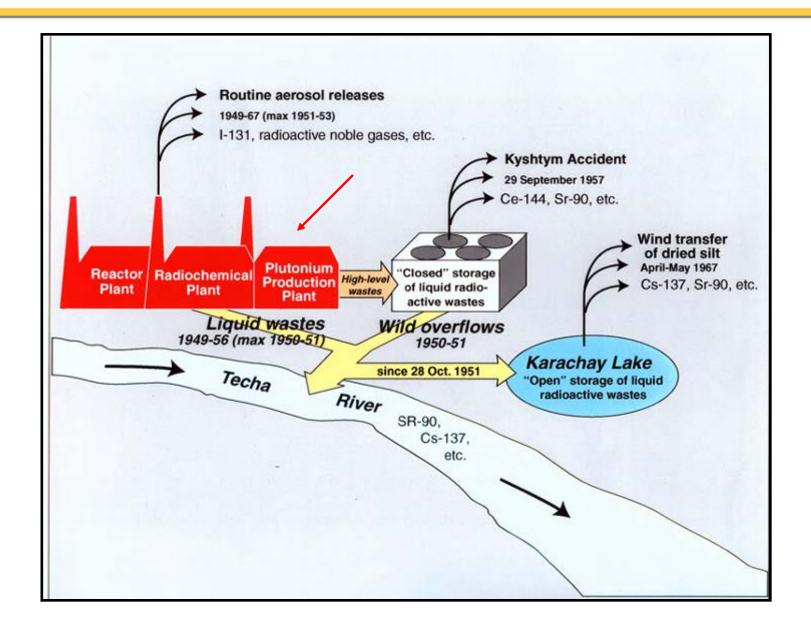
The thyroid gland is butterfly-shaped, with two lobes about the size of teaspoons. It is located in the front of the neck, below the Adam's apple.


Davis S, Kopecky KJ, Hamilton TE. Hanford Thyroid Disease Study. Final Report. 2002. Fred Hutchinson Cancer Research Center, Seatle, WA. (CDC Conract No. 200-89-0716), June 21, 2002 (Available at: http://www.cdc.gov/nceh/radiation/hanford/htdsweb/pdf/htdsreport.pdf)

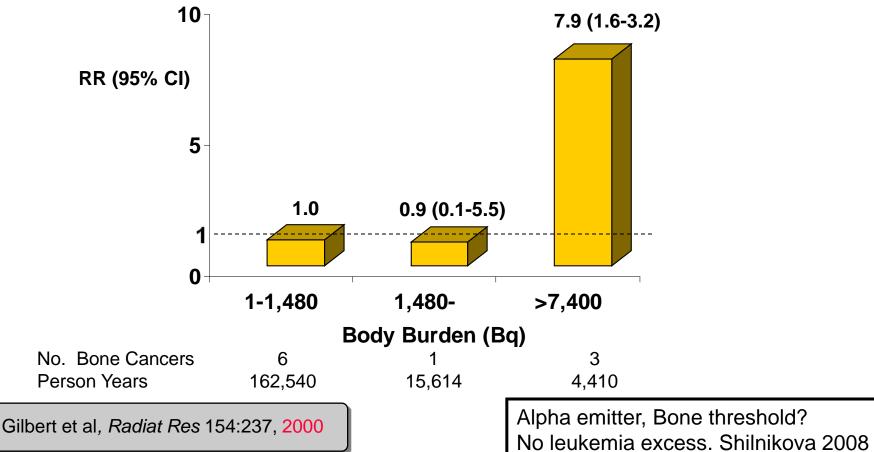
Hanford Thyroid Disease Study

- Exposure 1944-1957 ("pure" I-131)
- About 5,200 births in 1940-1946 selected
- 3,440 examined 1992-97
- Dose Reconstruction (174 mGy ave.;
 <1-1000+ mGy range)

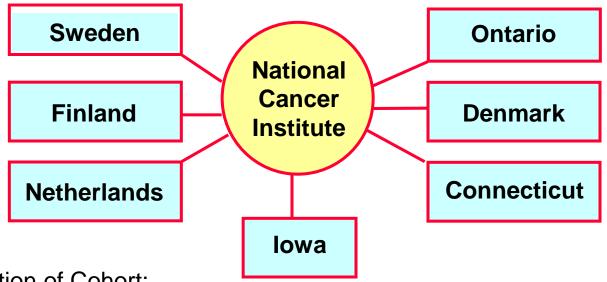
Davis et al. Final Report, 2002; <u>JAMA</u> 292:2600, 2004


Cumulative Incidence of Thyroid Disease by Dose

The percentage of people with thyroid disease is the same, regardless of dose.

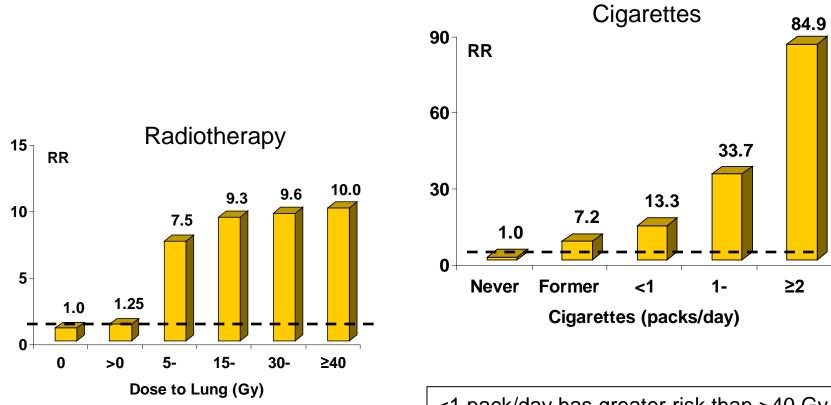

Davis et al. Final Report, 2002; JAMA 292:2600, 2004

Mayak Nuclear Weapons Plant


Mayak - Plutonium - Bone

Sokolnikov et al, Int J Ca 2008– update_bone, liver, lung – same bone picture Sokolnikov et al, PLos One, Feb 2015 – other than bone, liver, lung – low ERR/Sv Hunter et al, Br J Ca PLos One, Oct 2013 – other than bone, liver, lung – no to low ERR/Sv

Lung Cancer Following Hodgkin Lymphoma International Case - Control Study (2002)



Definition of Cohort:

- Diagnosis of Hodgkin lymphoma: 1965-1994
- Survival of 1 or more years Final Cohort: 22,977 (222 cases, 444 controls)

Travis et al. JNC/ 94:182, 2002

Lung Cancer After Hodgkin Lymphoma **Radiotherapy and Environmental Factors**

Gilbert et al, *Rad Res* 159:161, 2003 Travis et al, JNC/ 94:182, 2002

<1 pack/day has greater risk than \geq 40 Gy

Radiotherapy for Breast Cancer All Breast Cancers in Connecticut (1935-82) Second Breast Cancer

200 cGy (ave)

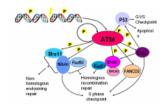
Tangential

Field Block

Tangential Field Block

Anterior Field B

RR	95% CI
1.19	0.9-1.5
0.99	0.7-1.4
1.33	1.0-1.8
2.26	0.9-5.7
1.46	0.9-2.3
1.01	0.8-1.4
	 1.19 0.99 1.33 2.26 1.46


*655 Cases, 1,189 Controls

Boice et al, *NEJM* 326:781, 1992

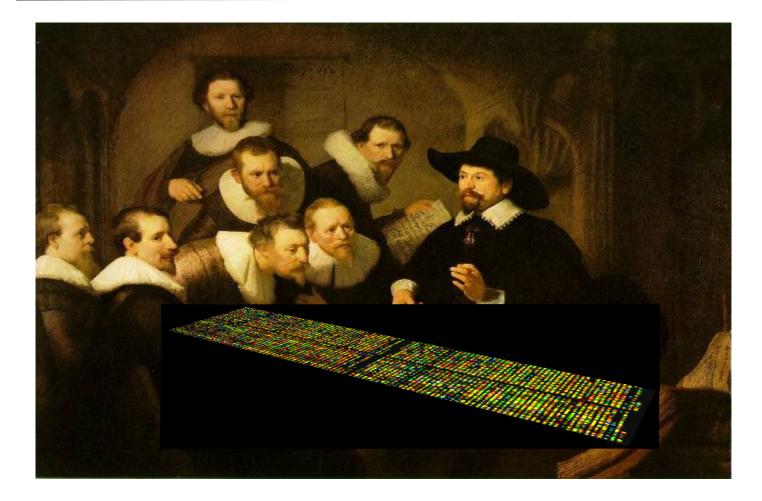
Risk after 10 years among young. Example of age modification.

Update: Stovall et al, Int J Radiat Oncol Biol Phys 72:1021-30,2008.

Genetic Susceptibility Second Breast Cancer

	Exposure	RR	95% CI
	BRCA1 mutation	5.1	3.0-8.5
Genes < 🛶	BRCA2 mutation	3.9	2.2-7.0
	1 Gy (age <40 y)	1.6	1.1-2.5
Radiation <	1 Gy (age <u>></u> 45 y)	1.0	0.9-1.3

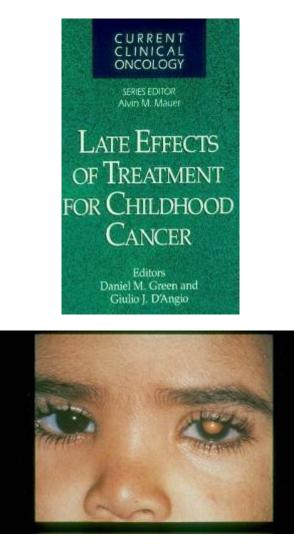
Bernstein J et al. BRCA1_Eur J Ca 2013 Bernstein J et al. ATM_JNCI 102, 2010 Concannon et al. *Cancer Res* 68, 2008

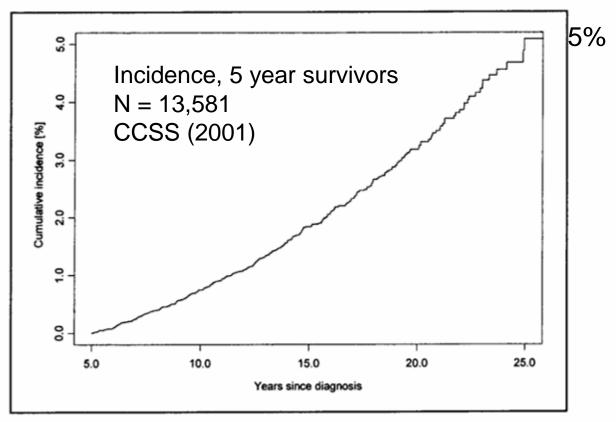

Stovall, *IJROBP* 72, 2008 Begg et al, *JAMA* 2008

- 1 Genes Predispose to Breast Cancer BRAC1/2, PALB2...
- 2 Radiation Risk When Exposures Occur Early, < 40 y

3 – Some Women may be Particularly Sensitive by Virtue of their Genetic Backdrop

- Genetics more important than dose
- Risk only among young women at Rx
- Doses lower than in the past

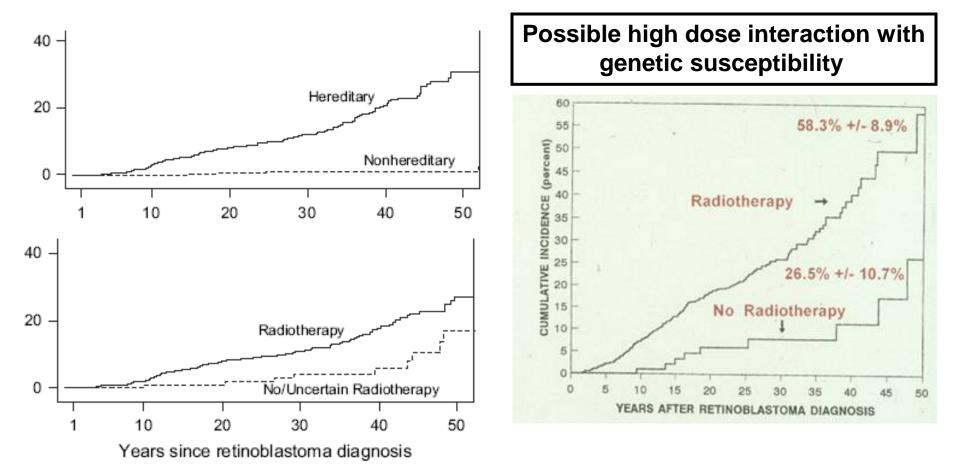

If Rembrandt were alive Today The *Genomics* "Anatomy Lesson"



Methods have focused on candidate genes, pathways and across the genome.

Courtesy of Dr Lois Travis, Roswell Park Medical Center

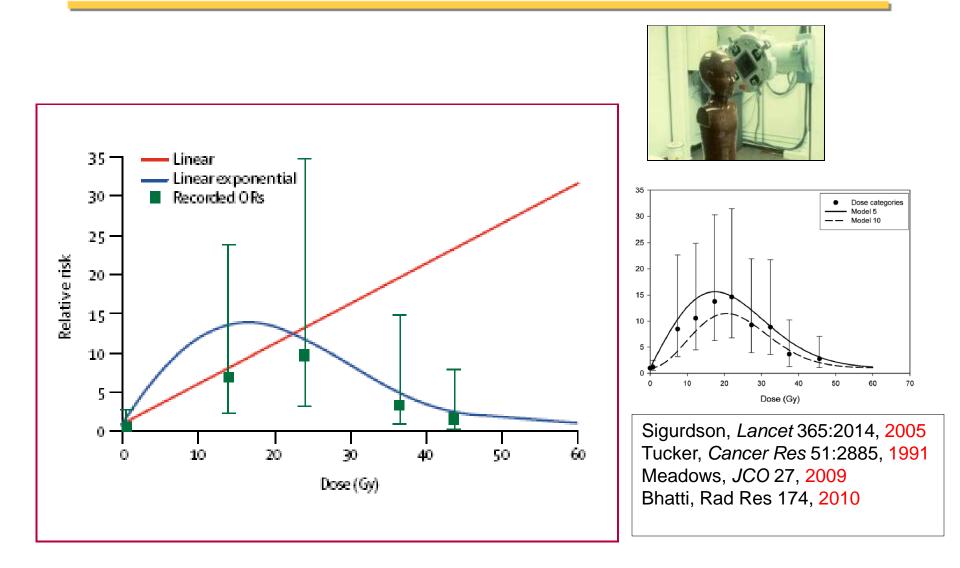
2nd Cancers After Childhood Cancer (CCSS)

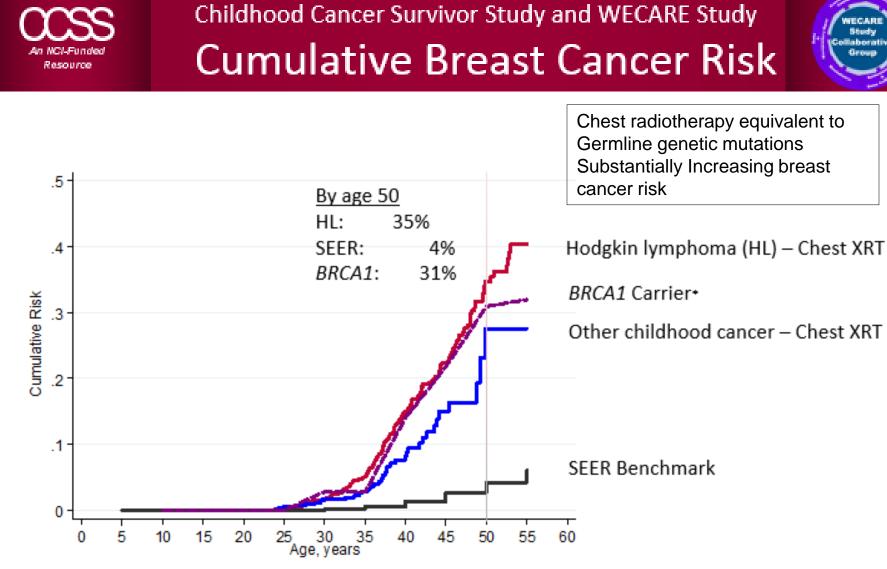


Neglia, JNC/ 93:618, 2001

Early Treatment of Retinoblastoma

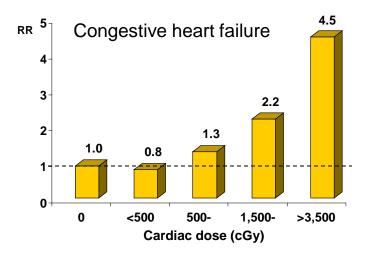
Second Cancer after Retinoblastoma

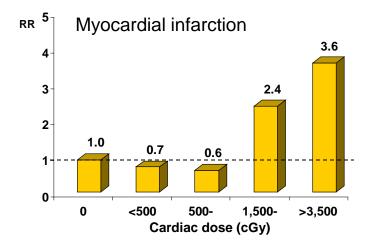


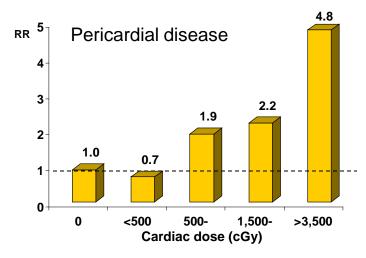

Updated. Yu et al. *JNCI 101:581, 2009*

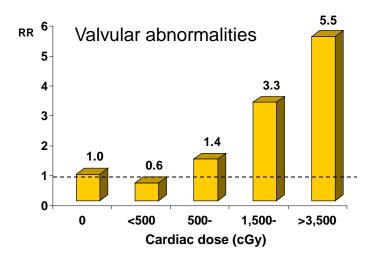
Updated. Kleinerman et al. *JCO 23:2272,* **2005**

Wong et al. JAMA 278:1262, 1997

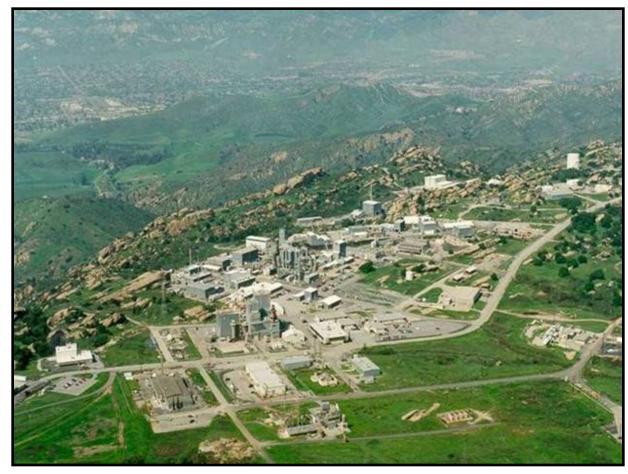

Thyroid Cancers After Childhood Cancer (CCSS) Cell Killing





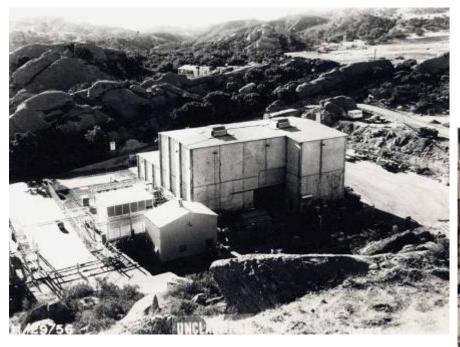

* Population-based estimate

Dose Response – Heart Disease (CCSS)



Mulrooney et al. BMJ 2009

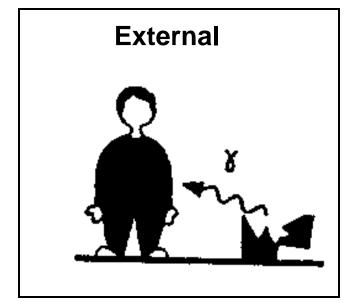
A Model for Dosimetry Rocketdyne/Atomics International Santa Susana Field Laboratory

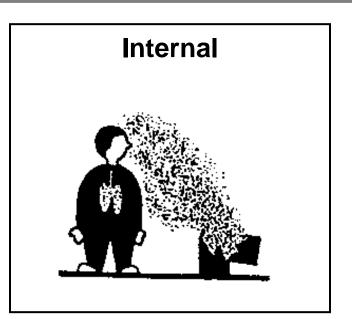


Simi Valley Sodium reactor Moorpark 1957 Edward R Murrow 'See it Now' Accident 1959 Saturn Engine

Leggett et al. J Radiol Prot 2005 Boice et al. Health Physics 2006 Boice et al. Radiat Res 2006 Boice et al. Radiat Res 2011

Sodium Reactor Experiment (1956)



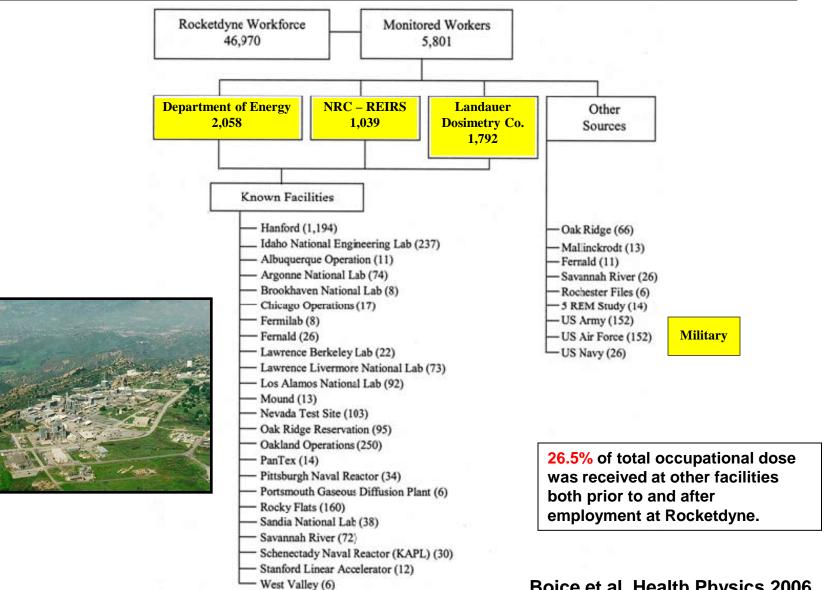

Hot Laboratory (1978)

- Gamma
- X-ray (radiographers)
- Neutrons

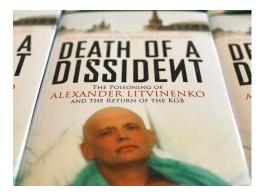
Types of Exposure

Uniform dose Delivered during exposure Film (TLD) badge reading

Leggett et al. J Radiol Prot 2005 Boice et al. Health Physics 2006 Non uniform dose Protracted in time Bioassay measurements

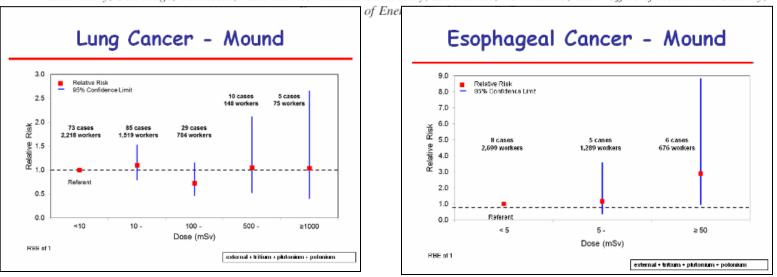

- Uranium, Plutonium
- Americium, Polonium
- Thorium, Strontium
- Cesium, Tritium

Discussion Sessions with Former Radiation Workers



Career Doses Sources of Additional Radiation Exposure

Boice et al. Health Physics 2006



Mound (Polonium) - 2014

Mortality Among Mound Workers Exposed to Polonium-210 and Other Sources of Radiation, 1944–1979

John D. Boice, Jr.,^{*a.b.*1} Sarah S. Cohen,^{*c*} Michael T. Mumma,^{*d*} Elizabeth Dupree Ellis,^{*e*} Donna L. Cragle,^{*e*} Keith F. Eckerman,^{*f*} Phillip W. Wallace,^{*e*} Bandana Chadda,^{*d*} Jennifer S. Sonderman,^{*d*} Laurie D. Wiggs,^{*g*} Bonnie S. Richter^{*h*} and Richard W. Leggett^{*f*}

 ^a National Council on Radiation Protection and Measurements, Bethesda, Maryland; ^b Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, Tennessee; ^c EpidStat Institute, Ann Arbor, Michigan;
 ^d International Epidemiology Institute, Rockville, Maryland; ^e Oak Ridge Associated Universities, Oak Ridge, Tennessee; ^f Oak Ridge National Laboratory, Oak Ridge, Tennessee; ^s Los Alamos National Laboratory, Los Alamos, New Mexico; and ^k Office of Health and Security,

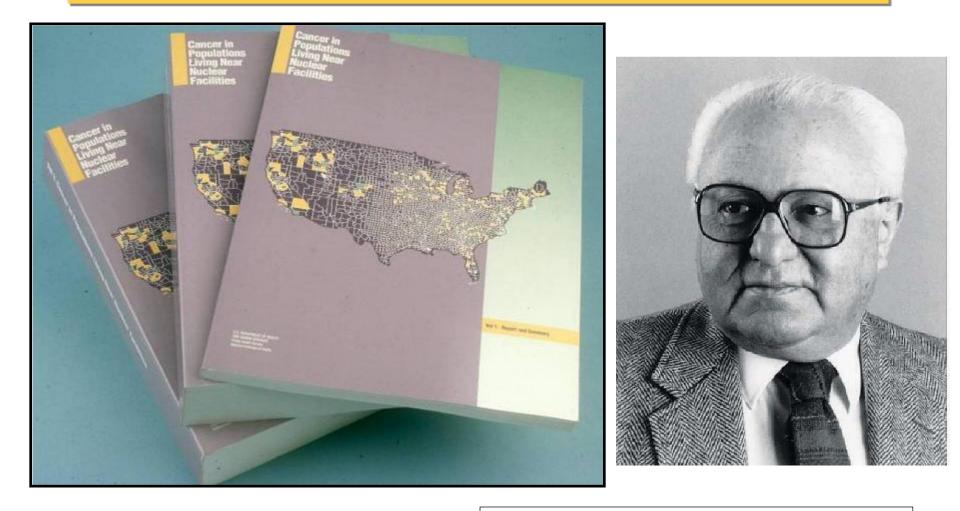
Executive Summary

Mr Litvinenko died on 23.11.06 following an intake of polonium-210, assumed here to have been on 1.11.06. Intake and doses to Mr Litvinenko were estimated on the basis of measurements on post-mortem tissue samples of liver, kidney, spleen and lung and a single urine measurement. Blood count results were provided for the time that Mr Litvinenko was in Barnett & Chase Farm Hospital from 3.11.06 to 17.11.06.

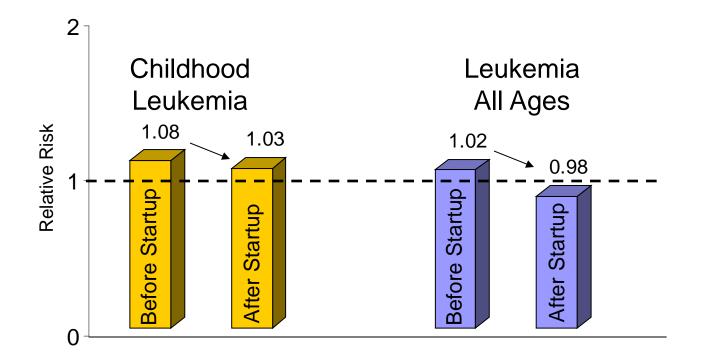
Doses were calculated using biokinetic and dosimetric models developed by the International Commission on Radiological Protection (ICRP) for the alimentary and respiratory tracts (ICRP 1994, 2006) and a systemic model for the distribution and retention of ²¹⁰Po absorbed to blood developed by Leggett and Eckerman (2001).

A best estimate of intake by ingestion was obtained using the kidney, liver and urine measurements. The value obtained was 4.4 GBq, or more correctly, 440 MBq absorbed to blood,

The estimated *LD/50* value of 3 Gy with supportive treatment was reached after about 3 days and the *LD/100value* of about 4 Gy in less than 5 days (estimated 4.5 Gy by 5 days). The cumulative dose to bone marrow after one week was estimated as about 6 Gy, increasing to about 12 Gy after 2 weeks and about 17 Gy by the time of death (22 days). Andrei Lugovoi charged

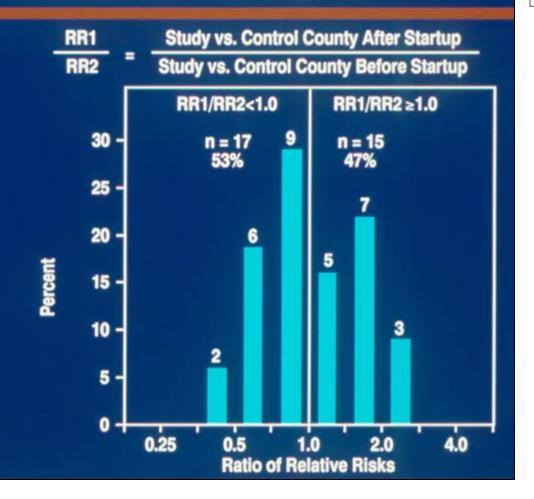

- Nuclear Facilities
- UK and International Worker Studies
- Natural Background Areas

Descriptive Studies Nuclear Facilities (Sellafield, U.K.)



Cancer in Populations Living Near Nuclear Facilities Jablon, JAMA 256: 1991

Digitally re-mastered VHS→DVD released 2011


Overall Relative Risk of Leukemia Before and After Nuclear Facility Startup

Jablon et al, JAMA 265:1403-1408, 1991

Risk higher before than after facilities began operating

Distribution of Ratios of Relative Risks ^a of Childhood ^b Leukemia

Concern – subgroup

analyses

- multiple comparisons
- chance

COMARE 14th Report: Further consideration of the incidence of childhood leukaemia around nuclear power plants in Great Britain 6 May 2011

In this, the 14th COMARE report, the incidence of childhood leukaemia in the vicinity of nuclear power plants (NPPs) in Great Britain has been reviewed and it has been concluded that the risk estimate for childhood leukaemia associated with proximity to an NPP is extremely small, if not zero.

Figure 3.1 NPP sites in Great Britain

Epidemiology is an observational science, it is not experimental

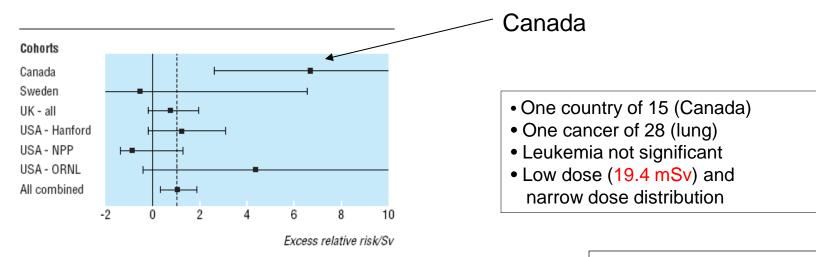
Epidemiology is an observational science for which small biases and confounding factors become much more important at low doses (UNSCEAR 2008).

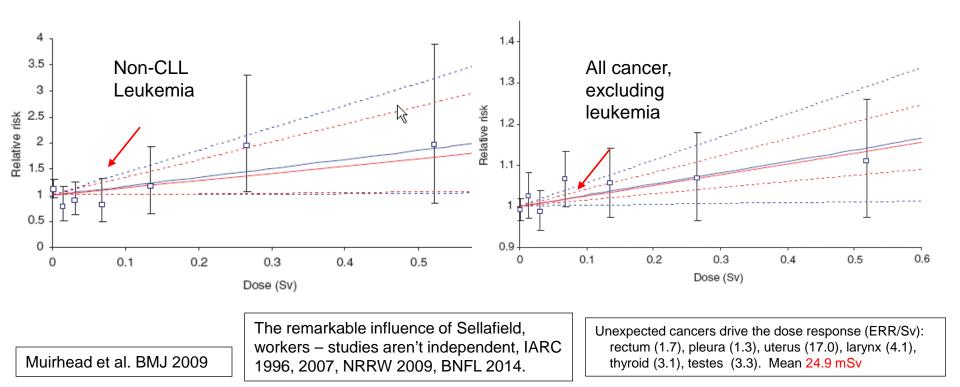
Further, the effect to be detected at low doses is, not surprisingly, very low and the statistical power of epidemiology is insufficient to demonstrate excesses.

Some biases/confounding to recognize include: selection, screening, response, survival, follow-up completeness, outcome ascertainment, confounding by smoking, chemicals, and by indication (UNSCEAR).

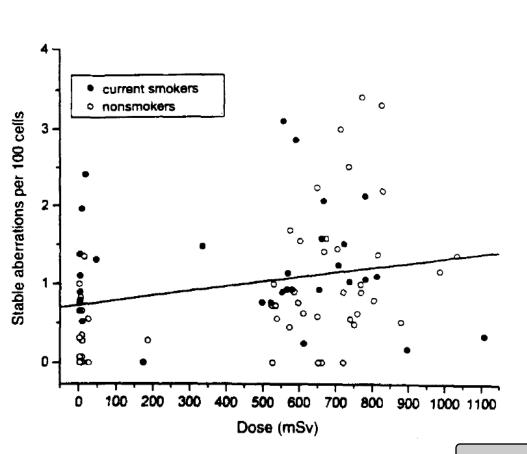
Low Dose Studies are More Susceptible to – Bias and Confounding and Chance

81. ... there are a number of studies of occupationally exposed persons, who generally receive low doses of ionizing radiation at low dose rates. For example, in the IARC 15-country study, average cumulative doses were 19.4 mSv, and fewer than 5% of workers received cumulative doses exceeding 100 mSv. (UNSCEAR 2008)




Fig 2 Excess relative risks per Sv for all cancer excluding leukaemia in cohorts with more than 100 deaths (NPP=nuclear power plants, ORNL=Oak Ridge National Laboratory)

Cardis et al. BMJ 2005 Ashmore et al. JRP 2010 Boice JRP 2010


Zablotska BJC 2014

Leukemia and Cancer Dose Response in the U.K. National Registry of Radiation Workers - 2009

"Within the cohort, mortality and incidence from both leukaemia excluding CLL and the grouping of all malignant neoplasms excluding leukaemia increased to a statistically significant extent with increasing radiation dose. Estimates of the trend in risk with dose were similar to those for the Japanese A-bomb survivors, with 90% confidence intervals that excluded both risks more than 2–3 times greater than the A-bomb values and no raised risk." Muirhead et al. BMJ 2009

Aberrations (& Leukemia) and DDREF of 6

81 workers, mean ~500 mSv

"The slope of the dose response for stable aberrations is 0.79 aberrations per 100 cells per sievert, which is less than that observed among atomic bomb survivors, and suggests a dose and dose-rate effectiveness factor for chronic exposure of about 6."

Tucker JD, Tawn EJ, et al. Rad Res 148, 1997

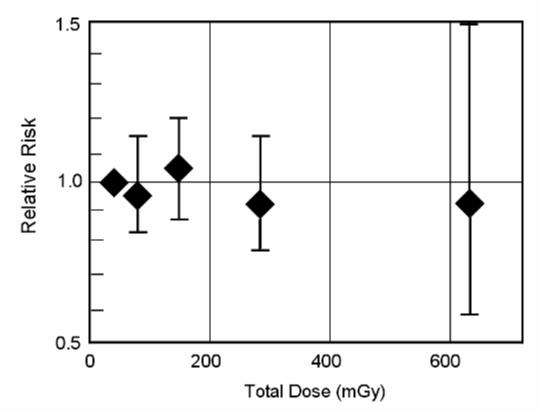
Yangjiang County, Guangdong Province, bordering on South China Sea,2 regions with thorium-containing monazites

Natural Background Radiation China, Thyroid Nodules

	High Background	Low Background
Number examined	1,001	1,005
Thyroid dose (rad)	14	5
Nodular disease	9.5%	9.3%
RR (95% CI)	1.02 (0.8-1.4)

Low Dose Rate External

Wang et al. *JNCI* 82, 1990


Karunagappally Study – Kerala, India

- 400,000 population
- cancer registry, established in 1990
- questionnaire survey of all residents
- radiation measurements in 70,000 homes
- personal dosimetry and biodosimetry
- individual dose estimates (mean, 161 mGy)

Relative Risk of All Cancer Excluding Leukemia by Cumulative Dose to High Background Radiation in Kerala

Nair et al. *Health Physics*, 2009; Boice et al. *Radiation Research* 2010

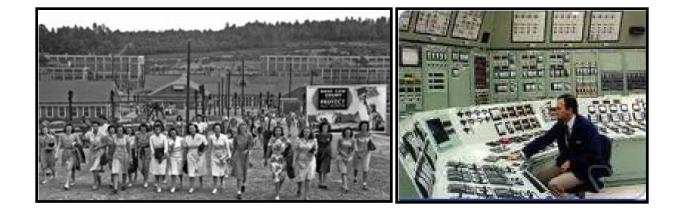
Epidemiology has shifted the focus from genetic effects in future generations to somatic effects on the individuals exposed.

Radiation epidemiology (UNSCEAR 2008) tells us that:

- a single exposure can increase your cancer risk for life
- the young are "somewhat" more susceptible than the old
- in-utero susceptibility is no greater than early childhood
- females are more susceptible than males.
- risks differ by organ or tissue and
- some sites have not been convincingly increased after exposure.

Radiation epidemiology has yet to tell us about low dose and low dose rate exposures

National Study of One Million U.S. Radiation Workers and Veterans



Robert Oppenheimer, General Leslie Groves, Enrico Fermi, Hans Bethe, Theodore Hall

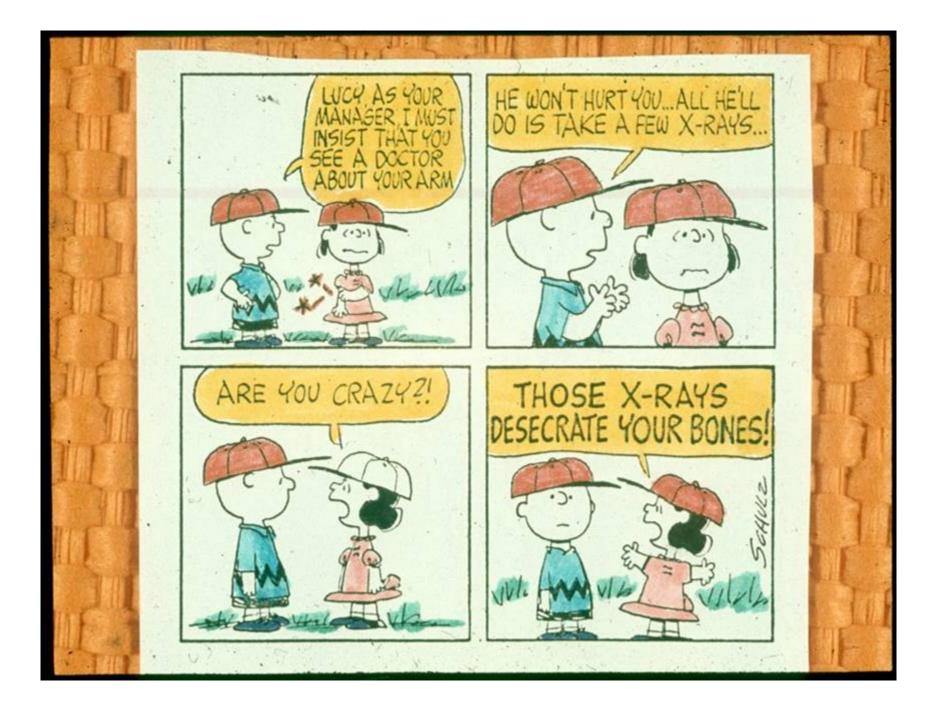
- Manhattan Project 360,000
 - Atomic Veterans 115,000
 - Nuclear Utility Workers 150,000
- Industrial Radiographers 115,000
- Medical & other

OAK (HARDTACK I), Enewetak, 8.9 MT, 28 Jun 1958

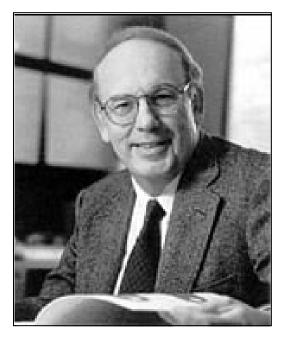
Bouville et al. Health Physics Feb 2015

>250,000

Comparison with Atomic Bomb Survivor Study



External Dose (mSv)	Million Worker Study Total to Date	Atomic Bomb Survivor Study (Ozasa 2012)
< 5 mSv	6,507,275	38,509
5 -	963,652	29,961
100 -	53,211	5,974
200 -	24,456	6,356
500 -	4,120	3,424
1000 -	1,007	1,763
> 2000 mSv	211	624
TOTAL	7,553,932*	86,611
> 100 mSv	83,005	18,141

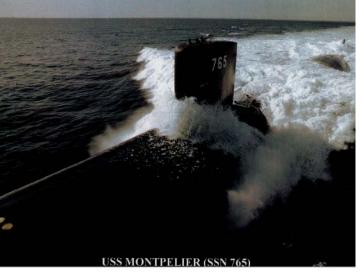

*3000 rolls of microfilm to come

4x more High Dose Subjects

As of Oct 2013

Thank You!

Progress in Cancer Research and Therapy Volume 26


Radiation Carcinogenesis Epidemiology and Biological Significance

Editors John D. Boice, Jr. • Joseph F. Fraumeni, Jr.

Raven Press

Epidemiologists will go to any DEPTH in the Public Interest - 85,033 Nuclear Submariners

At 600 feet

- Amundson S, et al. Low-dose radiation risk assessment. Report of an International Workshop on Low Dose Radiation Effects held at Columbia University Medical Center, New York, April 3-4, 2006. *Radiat Res* 166:561-565, 2006.
- Boice JD Jr. Ionizing radiation. In: *Cancer Epidemiology and Prevention, 3rd Edition*. (Schottenfeld D, Fraumeni JF Jr, eds). New York, Oxford University Press, 2006.
- Boice JD Jr. Lauriston S. Taylor lecture: Radiation epidemiology: the golden age and future challenges. *Health Phys* 100:59-76, 2011.
- Boice JD Jr. Implications of radiation dose and exposed populations on radiation protection in the 21st century. *Health Phys* 106:313-28, 2014.
- Boice JD Jr. Radiation epidemiology and recent paediatric computed tomography studies. *Ann ICRP*. March 24, 2015.
- Bouville A, Toohey RE, Boice JD Jr., et al. Dose reconstruction for the Million worker Study: status and guidelines. *Health Phys* 108:206-20, 2015.
- Cardis E, et al. The 15-Country collaborative study of cancer risk among radiation workers in the nuclear Industry: estimates of radiation-related cancer risk. *Radiat Res* 167:396, 2007.

- Darby S, et al. Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. *BMJ* 330:223, 2005.
- Fry RJM, Boice JD Jr. Radiation carcinogenesis. In: Oxford Textbook of Oncology, Second Edition (Souhami RL, Tannock I, Hohenberger P, Horiot J-C, eds). New York: Oxford Press, pp 167-184, 2002.
- Hall EJ, Metting N, Puskin J, Ron E. Low dose radiation epidemiology: what can it tell us? *Radiat Res* 172:134-138, 2009.
- International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans. Vol 75. *Ionizing Radiation, Part 1: X- and Gamma (γ) Radiation, and Neutrons*. Lyon, France: IARC, 2000.
 International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans. Vol 78. *Ionizing Radiation, Part 2: Some Internally Deposited Radionuclides*. Lyon, France: IARC, 2001.

Nair RR, et al. Background radiation and cancer incidence in Kerala, India-Karanagappally cohort study. *Health Phys* 96:55-66, 2009.

National Academy of Sciences. Committee on Health Risks of Exposure to Radon. (BEIR VI). Washington, DC: National Academies Press, 1999. National Research Council. Committee on the Biological Effects of Ionizing Radiation. (BEIR VII). Washington, DC: National Academies Press, 2006. National Council on Radiation Protection and Measurements (NCRP). Evaluation of the Linear-Nonthreshold Dose-Response Model for Ionizing Radiation. NCRP Report 136. Bethesda, MD: NCRP, 2001. NCRP. Second Primary Cancers and Cardiovascular Disease after Radiation Therapy. NCRP Report 170. Bethesda, MD: NCRP, 2011. NCRP. Uncertainties in the Estimation of Radiation Risks and Probability of Disease Causation. NCRP Report 171. Bethesda, MD: NCRP, 2012. NCRP. Preconception and Prenatal Radiation Exposure. NCRP Report 174. Bethesda, MD: NCRP, 2013.

Ozasa K, et al. Studies of the mortality of atomic bomb survivors, Report 14, 1950-2003: an overview of cancer and noncancer diseases. *Radiat Res* 177:229-43, 2012.

- Preston RJ. Integrating basic radiobiological science and epidemiological studies: why and how. *Health Phys* 108:125-30, 2015.
- Preston DL, et al. Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates. *Radiat Res* 162:377, 2004.
 Preston DL et al. Solid cancer incidence in atomic bomb survivors: 1958-1998. *Radiat Res* 168:1, 2007.
- Tubiana M, et al. *Dose-effect Relationships and the Estimation of Carcinogenic Effects of Low Doses of Ionizing Radiation*. Joint Report 2. Paris: Academie Nationale de Medecine, Institut de France-Academie des Sciences, 2005.
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR 2006 Report to the General Assembly with Scientific Annexes, Effects of Ionizing Radiation. Vol 1: Report and Annexes A and B. New York: United Nations, 2008; Vol 2: Annexes C, D and E, 2009, 2011.
- UNSCEAR. *Effects of Radiation Exposure of Children*. E.14.IX.2. United Nations, New York, 2013.

Questions and Answers

U.S. Department of Health and Human Services National Institutes of Health | National Cancer Institute www.dceg.cancer.gov/RadEpiCourse 1-800-4-CANCER Produced May 2015