## Cell phones and cancer risk

Professor Anssi Auvinen, MD, PhD
Tampere University, Tampere, Finland
STUK – Radiation and Nuclear Safety Authority
Helsinki, Finland

DCEG Radiation Epidemiology and Dosimetry Course 2019









#### Declaration of interests

- Member of INTERPHONE study group, PI of the Finnish Interphone study
- Member of COSMOS study group, PI of the Finnish COSMOS study
- Former member of the SCENIHR committee, ICNIRP PG, and SSM Expert Group
- Research funding through governmental research program and/or firewall from Nokia, network operator Telia and Mobile Manufacturers' Forum (currently MWFAI)

#### Outline

- Background: Introduction to RF-EMF and cellular phones
- Issues in epidemiological studies of cellular phones
- Results of major epidemiological studies
- Analysis by location
- Incidence trends
- Overall assessment

## Background

## Electromagnetic field



#### Radiofrequency fields



From 3 kHz to 300 GHz

#### The Electromagnetic Spectrum



## Sources of radiofrequency fields















#### RF field from various sources



## Field strength (SAR) from a mobile phone



## How do cellular phones work?



## Why is it 'cellular'?



- Area covered by a base station is a 'cell'
- Base stations linked to each other to form a network

# Issues in epidemiological studies of cellular phones

#### Introduction

- Health risks from exposure to radiofrequency electromagnetic fields a topic of 'epidemiology wars'
- Highly contested interpretation of the evidence
- Some researchers unfailingly report major increases in risks that are not replicated in other studies
- Are mobile phones the 'new tobacco'? An emerging major threat to public health?
- Comprehensive review of expert panels by IARC, AGNIR, SCENIHR, SSM and others



#### Major challenges

- Exposure assessment
- Recall bias in case-control studies
- Possible interference of brain tumor on recall and cognitive function
- Lack of identified biological mechanism, and hence a proper concept of dose (or even identification of the main aspect relevant for risk)
- Unclear latency





#### Exposure assessment for mobile phone use

- Questionnaire or interview
  - Retrospective
  - Inaccurate, possibility of bias
- Network operator records
  - Usually only ownership of a subscription
  - Who is the actual user?
  - Corporate subscriptions?
  - Amount and mode of use?
- Output power best proxy indicator of SAR
  - Not available in any epidemiological study





#### Determinants of cell phone output power

- Network/phone technology
  - Increasing efficacy, lower output with each generation NMT>>GSM>>UMTS>>LTE
  - Automatic power control: Minimal power needed for proper transmission
- Proximity to base station
  - If heavy traffic, a call can be referred to a more distant base station
- Calling while in transport
  - Wave-like increases and decreases in output power (first decreasing and then increasing distance)
- Rural area wth higher power
- Hands-free devices minimise the exposure to the head (do not affect power)

#### How accurate is recalled usage data? (1)

- Number of calls underestimated and <u>duration overestimated</u>
- Agreement between reported and recorded <u>diminished with time</u>
- Kappa 0.66 0.51 0.31 for quintiles of call duration
  - Kiyohara JESEE 2018: Comparison of recorded (SMP phone) and reported, N=94
  - Reported after the 1-month study period, at 1 year and at 4 years
- Kappa for call duration 0.50, number of calls 0.39
- Overreporting x1.7 for call numbers, x2.8 for all duration
  - Parslow Radiat Prot Dosim 2003 questionnaire vs operator data for 6-mo period, N=93

#### How accurate is recalled usage data? (2)

- Mireku et al. Environ Res 2018
- 350 participants with self-reported vs. operator-recorded call data
- <u>Call duration overestimated</u> by 45-59% of participants (underestimated by 11-16%)
- Weighted kappa 0.08-0.10 for call duration (7 categories)
- Sensitivity for identifying heavy use 13%

- Toledano Int J Hyg Environ Health 2018, 67,947 participants of COSMOS study
- Self-reported vs. operator-recorded call data
- Weighted kappa 0.50 for call duration (six categories)

#### Issues in recall and reporting in cases: Recall bias

- A form of information bias
- Typical for case-control studies with self-reported exposure
  - Cases interviewed after dg about exposure prior to dg
- Classically, cases are highly motivated, want find an explanation for their disease, attribute it to a specific factor
- Therefore, provide a more complete and comprehensive account of their exposures than controls
  - Root cause is under-reporting of exposure in cases
- In addition, possible over-reporting (exaggeration) of exposures in cases
  - Not classical form of recall bias
  - A case knows side of brain tumor, which could affect reported laterality of use

#### Issues in recall and reporting in cases (2)

- Cognitive and memory function may be affected by the tumor
- Physiological effect depending on the anatomic site
- Psychological impact of severe major disease, a life-changing effect
- Lower quality of data in cases??
- Mainly for maligant tumors, less of an issue for meningioma, schwannoma/neuroma

#### Is there recall bias in reporting?

Overreporting of use in distant past more pronounced in cases than controls

Vrijheid et al. J Expo Sci Environ Epid 2009

Mean difference in year of start between reported and recorded

- Cases +0.25
- Controls -0.51
- 96 vestibular schwannoma cases and 111 controls
- Pettersson et al. 2015

## Epidemiological findings

## Evidence from epidemiology

- Glioma, meningioma, schwannoma/neurinoma
- Case-control studies: Interphone, Hardell, CEFALO, CERENAT
- Cohort studies: Danish subscribers, UK Million Women
  - Less prone to recall bias
- Case-case studies: Within Interphone (Larjavaara, Cardis, Grell)
- Time trend analyses: Nordic countries, UK, US, other populations



#### Early studies of cellular phones and cancer

| Reference       | Cases                                            | Dg years  | Duration of use           |
|-----------------|--------------------------------------------------|-----------|---------------------------|
| Muscat 2000     | 469 brain cancers                                | 1994-1998 | Max 4+ yrs (mean 2.8 yrs) |
| Inskip 2001     | 489 gliomas, 197<br>meningiomas, 96<br>neurinoma | 1994-1998 | Max 5+ years (22 cases)   |
| Auvinen<br>2002 | 398 brain cancer, 34 salivary gland tumors       | 1996      | Max >2 years (17 cases)   |
| Lönn 2006       | Salivary gland                                   | 2000-2002 | Max >10 yrs (6 cases)     |
| Sadetzki        | Salivary gland (parotid)                         | 2001-2003 | Max >10 years (13 cases)  |

U.S. Cohort of 255,868 subscribers with 6 brain cancer deaths in 1-year follow-up (Dreyer et al. 1999)

#### Major studies of cellular phones and cancer

| Reference  | Glioma   | Meningioma | Acoustic neurinoma |
|------------|----------|------------|--------------------|
| Hardell    | 382/1844 | 346/1625   | 58/316             |
| Interphone | 252/2708 | 110/2409   | 68/1105            |
| Yoon       | -/285    | -          | -                  |
| Coureau    | 22/757   | 10/582     | -                  |
| Han        | -        | -          | 92/343             |
| Pettersson | -        | -          | 103/422            |
| Frei       | 117/356  | 29/80      | 15/404             |
| Benson     | 135/571  | 63/251     | 14/96              |

Aydin et al. JNCI 2011: Childhood and adolescent brain tumors, no long term use



## Glioma risk with any mobile phone use in Hardell studies



#### Glioma risk with duration of use in Hardell studies



#### Acoustic neuroma in Hardell studies





## Meningioma risk in Hardell studies



#### Interphone study

- International collaborative study in 13 countries
- Glioma, meningioma, acoustic neuroma (vestibular schwannoma)
- Cases diagnosed 2000-2004
- Cases enrolled prospectively with interview an average 3 mo from dg
- Participation 65% cases and 53% controls
  - Proxy interviews for 13% of glioma cases

#### Glioma and call-time in Interphone



## Cumulative call-time and meningioma risk





#### Cumulative call-time and acoustic neuroma





#### Danish cohort study

- Frei 2011, Schuz 2006, 2011, Poulsen 2012, 2013, Johansen 2001
- Exposed group: 358,403 subjects with private subscription in 1982-1995
  - Excluding 28% with corporate-owned subscription
- Poisson regression analysis
  - Confounders: Income, education
- Follow-up 1990-2007 (mean length 10.6 yrs)
  - 10,729 CNS tumors





#### Duration of use and brain tumor incidence





#### Duration of use and CNS cancers





Frei P et al. *BMJ* 2011;343:bmj.d6387

#### UK cohort study – Million Women Study

- Benson et al. Int J Epid 2013
- 791,710 women recruited 1996-2001 at mammography screening
- Questionnaire for collection of exposure data
  - At baseline and a re-survey in 2009
  - 500,000 ever users and 300,000 never-users
- Follow-up on average for 7 years
  - 1261 incident cases

#### Mobile phone use in the Million Women Study



#### Duration of use and risk of brain tumors





#### Million women study extended follow-up (up to 2011)



#### Meta-analyses of mobile phone use

- Röösli et al. Annu Rev Public Health 2019: Focus on long-term use
  - "Epidemiological studies do not suggest increased brain tumor risk with mobile phone use, although some uncertainty remains about long latency periods, rare subtypes and usage in childhood"
- Wang et al. World Neurosurg 2018: Wireless phone (DECT), glioma only
  - "Ever use of wireless phones was not significantly associated with adult glioma, but there could be risk in long-term users"
- Bortkiewicz et al. Int J Occup Med Environ Health 2017: Overlap between studies??
  - "The results support the hypothesis that longterm use of mobile phone increases risk of intracranial tumors, especially ipsilateral exposure"

# Meta-analysis - glioma

#### Glioma (long-term use)

| STUDY                                                 | SEX           | CASES |            | RR (95% CI)       |
|-------------------------------------------------------|---------------|-------|------------|-------------------|
| Cohort                                                |               |       |            |                   |
| Frei et al. 2011                                      | M             | 117   |            | 1.04 (0.85, 1.26) |
| Frei et al. 2011                                      | F             | 10    | -          | 1.04 (0.56, 1.95) |
| Benson et al. 2014                                    | F             | 135   | *          | 0.77 (0.62, 0.96) |
| Subtotal ( $I^2 = 52.2\%$ , $p =$                     | 0.124)        |       | <b>4</b>   | 0.92 (0.72, 1.16) |
| Case control                                          |               |       |            |                   |
| Interphone 2010                                       | M + F         | 252   |            | 0.98 (0.76, 1.26) |
| Coureau et al. 2014                                   | M + F         | 22    | -          | 1.61 (0.85, 3.09) |
| Yoon et al. 2015                                      | M + F         | 100   | _          | 1.04 (0.52, 2.09) |
| Hardell & Carlberg 2015b                              | M + F         | 382   | •          | 1.69 (1.40, 2.03) |
| Subtotal ( $I^2 = 76.0\%$ , $p =$                     | 0.006)        |       | $\Diamond$ | 1.30 (0.90, 1.87) |
| Overall ( <i>I</i> <sup>2</sup> = 82.0%, <i>p</i> < 0 | .001)         | ı     | •          | 1.11 (0.85, 1.46) |
|                                                       |               | 0.2   | 2 1.0 5.   | 0                 |
|                                                       | Relative risk |       |            |                   |

#### Meta-analysis - meningioma

#### Meningioma (long-term use) STUDY SEX CASES RR (95% CI) Cohort Frei et al. 2011 21 0.90 (0.57, 1.42) Frei et al. 2011 0.93 (0.46, 1.87) Benson et al. 2014 63 1.08 (0.78, 1.49) Subtotal ( $I^2 = 0.0\%$ , p = 0.794) 1.00 (0.78, 1.29) Case control Interphone 2010 M + F110 0.83 (0.61, 1.14) Coureau et al. 2014 M + F10 1.57 (0.64, 3.86) Carlberg & Hardell 2015 M + F346 1.10 (0.92, 1.32) Subtotal ( $I^2 = 37.0\%$ , p = 0.204) 1.02 (0.80, 1.30) Overall ( $I^2 = 0.0\%$ , p = 0.596) 1.03 (0.90, 1.17) 0.2 1.0 5.0 Relative risk

#### Meta-analysis – acoustic neuroma

#### Neuroma (long-term use) SEX STUDY CASES RR (95% CI) Cohort Schüz et al. 2011b M 15 0.88 (0.52, 1.48) Benson et al. 2014 14 1.17 (0.60, 2.27) Subtotal ( $I^2 = 0.0\%$ , p = 0.509) 0.98 (0.65, 1.48) Case control Interphone 2011 M + F68 0.76 (0.52, 1.11) Han et al. 2012 M + F92 1.29 (0.69, 2.43) Hardell et al. 2013b M + F58 2.49 (1.74, 3.56) Pettersson et al. 2014 M + F103 1.11 (0.76, 1.61) Subtotal ( $I^2 = 85.8\%$ , p < 0.001) 1.29 (0.74, 2.23) Overall ( $I^2 = 78.3\%$ , p < 0.001) 1.19 (0.80, 1.79) 0.2 1.0 5.0 Relative risk



# Analyses of tumor location



#### Local field – local effect?



#### Glioma location

#### 888 cases from 7 Interphone centers



#### Distribution of gliomas among cellular phone users vs nonusers



#### Gloma location by cell phone usage



# Danish cohort: RR by location



# Incidence trends

#### Reality check

- If use of mobile phones increases brain tumor risk, we should be able to observe increasing trends in incidence at some point
  - Population coverage ~100%, widely adopted since late 1990's
- How large effect?
- What amount of cellular phone use?
- When does it occur (induction period or lag/latency)?

#### Observed and predicted incidence, Nordic countries





#### Observed and expected glioma incidence in the U.S.



Little et al. BMJ 2012

#### Incidence of adult glioma in Finland



#### Incidence 7.7/100,000

Men: 9.3, women: 6.5

#### No obvious trend

APC: +0.1% (95% CI: -0.5, +0.7) For 2007-2016, APC -0.5%

For temporal tumors, APC -0.6% (-1.8, +0.5)



#### Latest incidence trends, children, Nordic countries

Nordic countries Brain, central nervous system Incidence: ASR (World) age 0-14





# Summary and conclusions

#### IARC carcinogenicity review

- Radiofrequency EMF classified in 2102 as 2B possibly carcinogenic to humans
  - Limited evidence in humans and experimental animals
  - Similar assessment as for ELF-EMF
- Based on epidemiological studies of glioma and acoustic neuroma
  - Interphone: Highest amount of cumulative use, ipsilateral use, temporal lobe tumors
  - Hardell studies and a Japanese case-control study
- Minority opinion suggested 'inadequate evidence' due to null findings in cohort studies and temporal trends

#### Summary

- Case-control studies have not shown strong evidence for increased brain tumor risk in relation to mobile phone use
  - Some indications of increased risk, but with an inconsistent pattern
  - Location of gliomas not affected by mobile phone use, though some discrepancy in results
- Real world data do not show increases in brain tumor incidence trends
   20 years after large-scale adoption of mobile phones
- Cohort studies show little indication of increased risks
  - COSMOS substantially larger, with quantitative call-time data
- There are still uncertainties but the balance of evidence post-IARC weighs toward no major health impact

#### Developments awaited

- MobiKids study
- COSMOS Cohort Study of Mobile Phone Use and Health
  - Swe-Fin-Den-UK-NL-Fra
  - 260,000 participants
  - Follow-up from 2009-2010
  - Analyses of tumor risks pending
- IARC carcinogenicity review to be revised



#### **ICNIRP** summary

- Extensive research has been undertaken in relation to exposure to HF fields used specifically in mobile telephony
- Risk of tumors in close proximity to the ear where the phone is held, e.g. brain tumors, has been a key focus, some studies reporting a slight increase in risk for long-term and heavy mobile phone users
- Reporting biases and weaknesses of the studies may explain the observed findings.
- Several studies have not reported any increase in brain tumors with mobile phone use
- The increased risk observed in some of the epidemiological studies is inconsistent with the stable frequency of occurrence of these cancers in the population
- The overall evaluation of all the research on HF fields leads to the conclusion that HF exposure below the thermal threshold is unlikely to be associated with adverse health effects

# **Quiz** (1)

Exposure assessment in studies of cancer risk associated with mobile phone use need to overcome methodological challenges related to:

- A. Recall bias
- B. Random error/misclassification in self-reported usage
- C. Lack of a physical dose concept
- D. All of the above

# **Quiz** (1)

Exposure assessment in studies of cancer risk associated with mobile phone use need to overcome methodological challenges related to:

- A. Recall bias
- B. Random error/misclassification in self-reported usage
- C. Lack of a physical dose concept
- D. All of the above

# **Quiz (2)**

#### Evidence supporting an increased risk of brain tumors is mainly

- A. Increasing incidence trends
- B. Positive results from cohort studies
- C. Increased risks found for meningioma
- D. None of the above

# **Quiz (2)**

#### Evidence supporting an increased risk of brain tumors is mainly

- A. Increasing incidence trends
- B. Positive results from cohort studies
- C. Increased risks found for meningioma
- D. None of the above

# U.S. Department of Health & Human Services National Institutes of Health | National Cancer Institute

dceg.cancer.gov/

1-800-4-CANCER

Produced September 2019