Dosimetry for epidemiologic studies of medical workers

Dr. Daphnée Villoing

Radiation Epidemiology Branch Division of Cancer Epidemiology and Genetics National Cancer Institute daphnee.villoing@nih.gov

DCEG Radiation Epidemiology and Dosimetry Course 2019

1. Background

- Dosimetric quantities
- Occupational dose limits
- Monitoring devices

Agenda 2. Dose reconstruction

- Badge dose reconstruction
- Organ dose reconstruction
- 3. Existing dosimetry studies
- 4. Conclusions

NATIONAL CANCER INSTITUTE

Background

Dosimetric quantities

• Operational quantities \neq protection quantities

Dosimetric quantities (2)

- Operational quantities
 - Personal dose equivalent, H_P(d) for individual monitoring
 Dose equivalent in ICRU (soft) tissue at an appropriate depth, d, below a specified point on the human body.

d = 10 mm	d = 3 mm	d = 0.7 mm	
Whole Body	Eye lens	Shallow tissues (skin and extremities)	
Deep dose equivalent	Lens dose equivalent	Shallow dose equivalent	

5

Occupational dose limits

As Low As Reasonably Achievable (A.L.A.R.A. principle)

- Time
- Distance
- Shielding
- Radiation protection: monitoring the individual radiation dose to ensure the radiation exposure remains A.L.A.R.A.
- Administrative controls: focus on the exposure (usually) over 10% of the established occupational regulatory limits

Occupational dose limits (2)

 Recommendations from the International Commission on Radiological Protection

Annual occupational dose limits for adults

Effective dose,	20 mSv/year over 5 years		
Lens dose equivalent	No single year > 50 mSv		
Shallow dose equivalent (skin, hands, feet)	500 mSv		

- International Basic Safety Standards (IAEA & WHO)
- Regulations applied by country

ICRP Publication 103, 2007 ICRP Publication 118, 2012

7

Monitoring devices (1)

- Individual passive dosimeters
 - ➢No direct readout
 - > No external source of energy needed to operate
 - Estimate an exposure received over time
- Types of passive dosimeters
 - Dosifilms, also called film badges (< 2000s)</p>
 - Thermoluminescent dosimeters (TLD)
 - > Optically stimulated luminescent dosimeters (OSL) (> 2000s)

ANTHONY

uxel

Monitoring devices (2)

- Various minimum detection levels
 - > Below these limits, the readings are reported as zero
- Different providers
 - Landauer, DosiLab, Mirion, IRSN, etc.
- Various locations
 - Chest/waist/collar for deep-dose equivalent
 - Finger for shallow-dose equivalent (ring dosimeters)
 - Over/underneath the lead apron

Dose reconstruction

Badge dose reconstruction

1st challenge: badge dose records not always available

Different scenarios:

- **1.** No badge doses for the whole cohort
 - \Rightarrow imputation only based on literature and work history
- 2. Badge doses missing for some subjects among the cohort ⇒ imputation based on work history and badge dose records from other subjects
- 3. Most of badge doses available but some records missing ⇒ imputation based on work history and badge dose records from the same subject

Badge dose reconstruction (2)

- 2nd challenge: work history not always available or detailed enough
 - High uncertainty on the literature-based dose estimates
 - Difficult identification of missing badges or badges not worn
 - No information on the type of procedures performed Main photon energies, geometry of irradiation
 - No information on the usage of a protective apron

Badge dose reconstruction (3)

Remaining uncertainties

Were the dosimeters worn during all periods of radiation exposure? (workers' compliance)

Specific issue observed with FGI staff, mostly

> Were the dosimeters worn at the point of highest exposure?

Were the dosimeters worn underneath or over the protective apron?

> How much exposure below the limits of detection?

Uncertainty on the dose estimates obtained through interpolation

Organ dose reconstruction

Organ dose reconstruction (2)

- Dose conversion factors
 - Depend on various parameters:
 - Dominant photon energy
 - Geometry of irradiation
 - Badge location
 - Apron usage
 - Use of tables of pre-computed dosimetry values

Organ dose reconstruction (3)

Tissue absorbed dose per unit of air kerma free-in air (Gy/Gy)

$$DF = \frac{D_T}{H_P(d)} = \frac{\frac{D_T}{K_a}}{\frac{H_P(d)}{K_a}}$$

Personal dose equivalent per unit of air kerma free-in air (Sv/Gy)

Organ dose reconstruction (4)

 Tables of pre-computed values of personal dose equivalent per unit of air kerma free-in air (Sv/Gy), for various energies and geometries of exposure

Example: for an antero-posterior exposure, without apron

H _P (d)/K _a	30 keV	50 keV	80 keV	150 keV	500 keV
d = 0.7 mm	1.230	1.632	1.732	1.518	1.244
d = 10 mm	1.112	1.766	1.903	1.607	1.256

Organ dose reconstruction (5)

2. Pre-computed values of organ/tissue absorbed dose per unit of air kerma free-in-air (Gy/Gy), for various energies

Influence of energy:

D_{Skin}/K_a for ⁶⁷Ga

Simon et al. *Health Phys*, 2011 ICRP Publication 74, 1996 ICRP Publication 118, 2010

Organ dose reconstruction (5)

2. Pre-computed values of organ/tissue absorbed dose per unit of air kerma free-in-air (Gy/Gy), for various energies

Influence of energy:

- D_{Skin}/K_a for ⁶⁷Ga
- D_{Lungs}/K_a for ^{99m}Tc

Simon et al. *Health Phys*, 2011 ICRP Publication 74, 1996 ICRP Publication 118, 2010

Organ dose reconstruction (6)

2. Pre-computed values of organ/tissue absorbed dose per unit of air kerma free-in-air (Gy/Gy), for various energies

Influence of energy:

- D_{Skin}/K_a for ⁶⁷Ga
- D_{Lungs}/K_a for ^{99m}Tc
- D_{RBM}/K_a for PET isotopes

Simon et al. *Health Phys*, 2011 ICRP Publication 74, 1996 ICRP Publication 118, 2010

Existing dosimetry studies of medical workers

Existing dosimetry studies of medical workers

- Most of the epidemiologic studies of medical workers do not report individual dosimetry, except from:
 - Canadian medical workers
 - > U.S. radiologic technologists
 - Korean medical workers
 - Chinese x-ray technologists
 - Danish radiation therapy workers
 - Japanese radiologic technologists

Existing dosimetry studies of medical workers (2)

- Canadian cohort study of medical workers
 - ▶ 67,562 workers
 - > Time period: 1951–1987
 - > Badge dose records from the National Dose Registry of Canada
 - ➢ No work history
 - > Annual and cumulative whole body dose ($H_P(10)$)
 - No organ doses

Zielinski et al. *Int J Occup Med Environ Health*, 2009 Ashmore et al. *Am J Epidemiol*, 1998 Sont et al. *Am J Epidemiol*, 2001

Existing dosimetry studies of medical workers (3)

U.S. radiologic technologists cohort study

- > 110,374 workers
- > Time period: 1916–1997
- > Badge dose records from Landauer, Inc. (mostly)
- Work history from 3 surveys
- Statistical simulation of various configurations
- > Annual and cumulative personal dose equivalents
- Doses to 12 organs and tissues

Existing dosimetry studies of medical workers (4)

- Korean medical workers
 - >94,396 workers
 - > Time period: 1996–2011
 - > Badge dose records from the centralized national dose registry
 - Detailed work history from a survey (2012)
 - Dose reconstruction model based on 8,167 medical workers
 - Deterministic dosimetry system (single estimates)
 - Doses to 7 organs and tissues

Choi et al. *J Prev Med Public Health*, 2016 Choi et al. *Radiat Prot Dosimetry*, 2018 Lee WJ et al. *Environ. Health*, 2019

Existing dosimetry studies of medical workers (5)

Chinese X-ray technologists

- > 27,011 workers
- > Time period: 1950–1995
- No badge dose records
- Occupational history survey (from 3,545 workers)
- > H_P(0.07) and H_P(10) estimates
 - model validated on 10 monitored workers
- Doses to 5 organs and tissues

26

Existing dosimetry studies of medical workers (6)

Danish radiation therapy workers

- >4151 workers
- > Time period: 1954–1982
- Badge dose records (kept locally before 1975 then centralized at the National Institute of Radiation Hygiene)

No work history

> Annual and cumulative skin doses (then converted to $H_P(10)$)

➢ No organ doses

Existing dosimetry studies of medical workers (7)

Japanese radiologic technologists

- > 12,195 workers
- > Time period: 1969–1993
- Dose reconstruction for 3,461 workers with work history and relatively high doses
- Dose reconstruction model tested on 1,069 workers with work history and self-reported doses
 - No good correlation between reconstructed and self-reported doses
 - Individual film badge doses proven to be necessary

28

Conclusions

Some challenges specific to medical workers

- Non-uniform exposures
 - Various positions of the workers
- Various energies possibly involved
- Higher proportion of women than in other radiation fields
 - Majority of female workers among the U.S. radiologic technologists
 - > Additional doses to estimate (breast, reproductive organs, fetus)
 - Dose-response observed for female breast cancer

What do we need for a good dosimetry study of medical radiation workers

Detailed + work history	Comprehensive badge dose records		
Types of procedures	Annual dose records		
Types of radionuclides for NM	Number of readings		
Precise badge location			
Radiation safety practices	Monthly dose records		

Quiz

• Personal dose equivalent $H_P(d)$ is :

- A. A physical quantity
- B. An operational quantity
- C. A protection quantity

• Personal dose equivalent $H_P(d)$ is :

- A. A physical quantity
- B. An operational quantity
- C. A protection quantity

 Effective dose is used as a surrogate of the personal dose equivalent

A. True B. False

 Effective dose is used as a surrogate of the personal dose equivalent

- Organ dose estimates depend on:
 - A. Badge dose records
 - B. Photon energy spectrum
 - C. Geometry of irradiation
 - D. Radiation safety practices
 - E. All of the above

- Organ dose estimates depend on:
 - A. Badge dose records
 - B. Photon energy spectrum
 - C. Geometry of irradiation
 - D. Radiation safety practices
 - E. All of the above

U.S. Department of Health & Human Services National Institutes of Health | National Cancer Institute

dceg.cancer.gov/

1-800-4-CANCER

Produced September 2019