Genetics of radiation-related non-cancer diseases

Catharine West, PhD

Professor of Radiation Biology University of Manchester, UK @catharinewest3

DCEG Radiation Epidemiology and Dosimetry Course 2019

https://dceg.cancer.gov/RadEpiCourse

Learning outcomes (1)

- Studies in patients receiving therapeutic radiation can increase understanding of the genetics of radiation-related non-cancer diseases
- Genetic studies of radiation toxicity must allow for potential confounders and modifiers
- The genetic determinants of non-cancer effects will involve rare variants with large effects, low frequency variants with moderate effects and common variants with small effects

Learning outcomes (2)

- Building cohorts with good quality data and sample collections is key and a consortium approach is required
- Study design considerations include: retrospective/prospective, casecontrol/cohort, time-point for assessing toxicity, allowing for baseline toxicity, harmonizing data collected using different scoring systems, variables to include in multivariable analyses, statistical power
- Studies should follow STROGAR reporting guidelines
- Fine-mapping identifies the probable genetic variant (or variants) and provides mechanistic understanding

Non-cancer effects of radiation

- Cataracts
- Circulatory disease vascular damage
- Non-malignant respiratory and digestive diseases
- Cognitive impairment
- Little MP Radiat Environ Biophys 2013; 52:435-49

Radiotherapy toxicity

Studies in patients receiving therapeutic radiation can increase understanding of the genetics of radiation-related non-cancer diseases

Effects of radiation on normal tissues are tissue and time dependent

Many factors affect risk of radiotherapy toxicity

- Physical factors: radiation dose, volume and type
- Treatment factors: prior surgery, use of chemotherapy or other treatments
- Patient factors: age, smoking, comorbidities
- Genetics

Genetic studies of radiation toxicity must allow for potential confounders & modifiers

The relationship between genotype and radiation effects is affected by modifiers and confounders

Radiogenomics aims to identify the genetic determinants of radiotherapy toxicity

- Single nucleotide variants (SNVs): mutations, common single nucleotide polymorphisms (SNPs)
- Copy number variation (insertions/deletions - indels)
- Epigenetics is also likely to be involved - methylation

Identifying patients with an increased risk of toxicity to personalise treatments

The genetic determinants of non-cancer effects will involve rare variants with large effects, low frequency variants with moderate effects and common variants with small effects

Allelic architecture: number, type, effect size and frequency of susceptibility variants of a trait

Rare homozygote variants with large effects

Syndrome	Mutated Gene(s)	Associated with
Ataxia telangiectasia (AT)	ATM	Radiotherapy side effects
AT-like disorder-1	MRE11	Cellular radiosensitivity
Cornelia de Lange syndrome	SMCL1A	Variable radiosensitivity
Cowden syndrome	PTEN	Radiotherapy side effects
Fanconi anemia	Numerous	Radiotherapy side effects in some
Gorlin syndrome	PTCH1	Cellular radiosensitivity, risk of second cancer
Li-Fraumeni syndrome	TP53	Risk of second malignancy
Ligase IV syndrome	LIG4	Radiotherapy toxicity
Neurofibromatosis type 1	NF1	Risk of second malignancy
Nijmegen breakage syndrome (NBS)	NBN	Radiotherapy toxicity
NBS-like syndrome	RAD50	Cellular radiosensitivity
Radiosensitive SCID	DCLRE1C, PRKDC	Cellular radiosensitivity
Retinoblastoma	RB1	Moderate radiosensitivity, risk of second cancer
RIDDLE syndrome	RNF168	Cellular radiosensitivity

Mechanism of action of radiation involves multiple genes/pathways

Common variants have small effects

Independent validation of genes and polymorphisms ●▲▲ reported to be associated with radiation toxicity: ●▲▲ a prospective analysis study Glian C Barnett, Charlotte E Coles, Rebecca M Elliott, Caroline Baynes, Craig Luccarini, Don Conroy, Jennifer SWilkinson, Jonathan Tyre, ●▲▲ Vivek Misra, Radka Platte, Sarah L Gulliford Matthew R Sydes, Emma Hall, Søren M Bentzen, David P Dearnaley, Neil G Burnet, Paul D P Pharoah, >▲ Alison M Dunning, Catharine M L West Summary Background Several studies have reported associations between radiation toxicity and single nucleotide polymorphisms Lanet Oned 2012; 13: 65-77 Published Online Burnet to validate genes. Few associations between genotype and radiation toxicity in a large independent dataset. Published Online Duroning. Catharine J Disported associations between genotype and radiation toxicity in a large independent dataset. Published Online

- Strongest association for *ATM* rs4988023 OR 1.53; 95% CI 1.08-2.18
- Previously reported late toxicity associations were not replicated
- Individual effect sizes are small and not clinically relevant
- Large studies needed

Finding the unknown unknowns requires GWAS

Building cohorts with good quality data and sample collections is key and a consortium approach is required

Identifying genetic variants requires careful consideration of study design

- Prospective or retrospective?
- Which toxicity data scoring system or how can data collected using different scoring systems be harmonized?
- If baseline toxicity data are available, should it be used to correct for?
- What is the best time point for assessing toxicity?
- Case-control or cohort (all patients at a particular time-point) study?

Identifying genetic variants requires careful consideration of study design

- Fixed time point or time-to-event?
- What data should be included in multivariable analyses?
- Is it possible to deal with missing data?
- Candidate gene or genome wide association study (GWAS)?
- What is the level of statistical power?

Study design considerations include: retrospective/prospective, case-control/cohort, time-point for assessing toxicity, allowing for baseline toxicity, harmonizing data collected using different scoring systems, variables to include in multivariable analyses, statistical power

Statistical power

- The power to detect a genetic variant depends on allelic effect size, marker allele frequency and toxicity endpoint prevalence
- Common risk alleles for most complex traits confer relative risks of 1.05 - 1.2
- Power to detect most alleles is limited

Power of 10,000 cases GWAS to detect risk alleles of frequency 0.2 for toxicities of prevalences of 10, 20 and 30%

A standardized total average toxicity (STAT) score to pool data from different studies

ELSEVIER	Int. J. Radiation Oncology Biol. Phys., Vol. 82, No. 3, pp. 1065–1074, 2012 Copyright © 2012 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/\$ - see front matter doi:10.1016/j.ijrobp.2011.03.015				
CLINICAL INVEST	GATION Normal Tissue				
STANDARDIZED TOTAL AVERAGE TOXICITY SCORE: A SCALE- AND GRADE-INDEPENDENT MEASURE OF LATE RADIOTHERAPY TOXICITY TO FACILITATE POOLING OF DATA FROM DIFFERENT STUDIES					
Gillian C. Bab Paul D. P. George A Alison M	NETT, B.M., B.Ch., ^{*†} Catharine M. L. West, Ph.D., [‡] Charlotte E. Coles, Ph.D.,* Pharoah, Ph.D., [†] Christopher J. Talbot, Ph.D., [§] Rebecca M. Elliott, M.Res., [‡] . Tanteles, M.D., [¶] R. Paul Symonds, M.D., Jennifer S. Wilkinson, B.Sc.,* . Dunning, Ph.D., [†] Neil G. Burnet, M.D.,* and Søren M. Bentzen, Ph.D.**				

Reporting guidelines should be followed

Studies should follow STROGAR reporting guidelines

Recent large candidate gene studies identified risk variants

British Journal of Cancer (2012) 107, 748-753 npg © 2012 Cancer Research UK All rights reserved 0007-0920/12 *TNF* rs1800629 www.bicancer.con 2,036 breast cancer patients A replicated association between polymorphisms near TNF α and risk for adverse reactions to radiotherapy OR=2.4 for late effects CJ Talbot^{*,1}, GA Tanteles^{1,2}, GC Barnett^{3,4}, NG Burnet³, J Chang-Claude⁵, CE Coles³, S Davidson⁶, AM Dunning⁴, J Mills², RJS Murray¹, O Popanda⁷, P Seibold⁵, CML West⁸, JR Yarnold⁹ and RP Symonds² Radiation Oncology *XRCC1* rs2682585 iology • physics Clinical Investigation 2,636 breast cancer patients XRCC1 Polymorphism Associated With Late CrossMark Toxicity After Radiation Therapy in Breast Cancer OR=0.77 for late effects Patients Petra Seibold, PhD,* Sabine Behrens, PhD,* Peter Schmezer, PhD, Irmgard Helmbold, MD.* Gillian Barnett, MD, PhD. Charlotte Coles, MD,[‡] John Yarnold, MD,[§] Christopher J. Talbot, PhD, Takashi Imai, PhD,[¶] David Azria, MD, PhD,[#] C. Anne Koch, MD, PhD,** Radiotherapy and Oncology 121 (2016) 431-439 Alison M. Dunning, PhD,^{††} Neil Burnet, PhD,^{‡‡} Judith M. Bliss, MSc,^{§§} R. Paul Symonds, MD, III Tim Rattay, MBChB, MRes, III Tomo Suga, MSc, Contents lists available at Science Direct Sarah L. Kerns, PhD, MPH,¹¹ Celine Bourgier, MD, PhD,[#] Katherine A. Vallis, PhD,## Marie-Luise Sautter-Bihl, MD,*** Johannes Claßen, MD,^{†††} Juergen Debus, MD,[‡] Radiotherapy and Oncology Thomas Schnabel, MD, SSS Barry S. Rosenstein, PhD, 1 Frederik Wenz, MD, Catharine M. West, PhD, 111 journal homepage: www.thegreenjournal.com Odilia Popanda, PhD,[†] and Jenny Chang-Claude, PhD, MHS* Meta-analysis

ATM rs1801516 5,458 breast & prostate cancer patients OR~1.5 for early effects and 1.2 for late effects Cross Mark

Individual patient data meta-analysis shows a significant association

breast and prostate cancer patients

between the ATM rs1801516 SNP and toxicity after radiotherapy in 5456

Christian Nicolaj Andreassen a*, Barry S. Rosenstein^b, Sarah L. Kerns c-b, Harry Ostrer^d, Dirk De Ruysscher^e,

Jamie A. Cesaretti^{*}, Gillian C. Barnett[®], Alison M. Dunning[®], Leila Dorling[®], Catharine M.L. West[†], Neil G. Burmet^{*}, Rebecca Elliott^{*}, Charlotte Coles^{*}, Emma Hall¹, Laura Fachal⁺, Ana Vega^{*}, Antonio Gómez-Caamaño[†], Christopher J. Talbot^{**}, R. Paul Symonds[®], Kim De Ruyck[®], Hubert Thierens[®], Piet Ost[®], Jenny Chang-Claude^{®*}, Petra Seibold^{*}, Odilla Popanda⁺, Marie Overgand⁺, David Dearnaley⁺,

Matthew R. Sydes ", David Azria ², Christine Anne Koch ¹⁰, Matthew Parliament⁸, Michael Blackshaw ⁸, Michael Sia ⁷, Maria J. Fuentes-Raspall¹, Teresa Ramon y Cajal ²⁴, Agustin Barnadas⁴, Danny Vesprini^{4b}, Sara Gutiérrez-Enríquez ⁴⁸, Meritxell Mollä ⁴⁴, Orland Díez ⁴⁸, John R. Yarnold¹, Jens Overgaard⁴, Seren M. Benten⁴¹, Ian Alsner⁴, On behalf of the International Radiogenomics Consortium (RgC)

GWAS identified novel genes

genetics	Int. J. Radiation Oncology Biol. Phys., Vol. 78, No. 55, pp. 1292–1300, 2010 Copyright © 2010 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/5 - see front matter ELSEVIER doi:10.1016/j.ijrobp.2010.07.036
A three-stage genome-wide association study identifies a susceptibility locus for late radiotherapy toxicity at 2q24.1 Laura Fachal ^{1,2} , Antonio Gómez-Caamaño ³ , Gillian C Barnett ⁴ , Paula Peleteiro ³ , Ana M Carballo ³ , Patricia Calvo-Crespo ³ , Sarah L Kerns ⁵ , Manuel Sánchez-García ⁶ , Ramón Lobato-Busto ⁶ , Leila Dorling ⁴ , Rebecca M Elliott ⁷ , David P Dearnaley ⁸ , Matthew R Sydes ⁹ , Emma Hall ¹⁰ , Neil G Burnet ¹¹ , Ángel Carracedo ^{1,2,12} , Barry S Rosenstein ⁵ , Catharine M L West ⁷ , Alison M Dunning ⁴ & Ana Vega ^{1,2}	ASTRO Online CME CLINICAL INVESTIGATION Prostate GENOME-WIDE ASSOCIATION STUDY TO IDENTIFY SINGLE NUCLEOTIDE POLYMORPHISMS (SNPS) ASSOCIATED WITH THE DEVELOPMENT OF ERECTILE DYSFUNCTION IN AFRICAN-AMERICAN MEN AFTER RADIOTHERAPY FOR PROSTATE CANCER SARAH L. KERNS, Ph.D., M.P.H.,* HARRY OSTRER, M.D.,* RICHARD STOCK, M.D., [†] WILLIAM LI, M.D., [‡] JULIAN MOORE, D.O., [†] ALEXANDER PEARLMAN, PH.D.,* CHRISTOPHER CAMPBELL, B.S.,* YONGZHAO SHAO, PH.D., [§] NELSON STONE, M.D., ^{†¶} LYND BARRY S. ROSENSTEIN, PH.D., ^{†¶}
Gene involved in muscle cell regeneration	Gene involved in erectile function with
with overall toxicity	erectile dysfunction
Radiotherapy and Oncology 107 (2013) 372-376	Radiotherapy and Oncology 111 (2014) 178–185
Contents lists available at SciVerse ScienceDirect Radiotherapy and Oncology ELSEVIER journal homepage: www.thegreenjournal.com	Contents lists available at ScienceDirect Radiotherapy and Oncology ELSEVIER journal homepage: www.thegreenjournal.com
GWAS in prostate cancer RT Genome-wide association study identifies a region on chromosome 11q14.3 associated with late rectal bleeding following radiation therapy	Radiogenomics A genome wide association study (GWAS) providing evidence of an association between common genetic variants and late radiotherapy toxicity
Sarah L. Kerns ^{a,b} , Richard G. Stock ^a , Nelson N. Stone ^{a,c} , Seth R. Blacksburg ^a , Lynda Rath ^a , Ana Vega ^d Laura Fachal ^d , Antonio Gómez-Caamaño ^e , Dirk De Ruysscher ^{f,g} , Guido Lammering ^g , Matthew Parliament ^h , Michael Blackshaw ^h , Michael Sia ⁴ , Jamie Cesaretti ^j , Mitchell Terk ³ , Rosetta Hixson ^j , Barry S. Rosenstein ^{a,k,Im,e,1} , Harry Ostrer ^{b,n,1}	Gillian C. Barnett ^{a,b,*} , Deborah Thompson ^a , Laura Fachal ^c , Sarah Kerns ^d , Chris Talbot ^e , Rebecca M. Elliott ^f , Leila Dorling ^a , Charlotte E. Coles [#] , David P. Dearnaley ^h , Barry S. Rosenstein ^d , Ana Vega ^c , Paul Symonds ¹ , John Yarnold ^h , Caroline Baynes ^a , Kyriaki Michailidou ^a , Joe Dennis ^a , Jonathan P. Tyrer ^a , Jennifer S. Wilkinson [#] , Antonio Gómez-Caamaño ¹ , George A. Tanteles ^k , Radka Platte ^a , Rebecca Mayes ^a , Don Conroy ^a , Mel Maranian ^a , Craig Luccarini ^a , Sarah L. Gulliford ^h , Matthew R. Sydes ¹ , Emma Hall ^m , Joanne Haviland ^m , Vivek Misra ⁿ , Jennifer Titley ^m , Søren M. Bentzen ^o , Paul D.P. Pharoah ^a , Neil G. Burnet ^{b,1} , Alison M. Dunning ^{a,1} , Catharine M.L. West ^{1,1}
Gene involved in regulation of angiogenesis	Gene involved in smooth muscle contraction

and rectal bleeding and rectal incontinence

Most recent Radiogenomics Consortium meta-analysis

Kerns SL, Fachal L, Dorling L, Barnett GC, Baran A, Peterson DR, Hollenberg M, Hao K, Narzo AD, Ahsen ME, Pandey G, Bentzen SM, Janelsins M, Elliott RM, Pharoah PDP, Burnet NG, Dearnaley DP, Gulliford SL, Hall E, Sydes MR, Aguado-Barrera ME, Gómez-Caamaño A, Carballo AM, Peleteiro P, Lobato-Busto R, Stock R, Stone NN, Ostrer H, Usmani N, Singhal S, Tsuji H, Imai T, Saito S, Eeles R, DeRuyck K, Parliament M, Dunning AM, Vega A, Rosenstein BS, West CML. **Radiogenomics Consortium Genome-Wide Association Study Meta-analysis of Late Toxicity after Prostate Cancer Radiotherapy.** *J Natl Cancer Inst.* 2019 May 16.

- 5,705 prostate cancer patients, 3,874 analyzed
- ↑ Urinary frequency, ↓ urinary stream, hematuria, rectal bleeding
- Baselines corrected late toxicity: time to first ≥grade 2 toxicity event
- Multivariable analysis: androgen deprivation therapy, prior prostatectomy, age at treatment, and total BED

Radiogenomics Consortium Meta-analysis

OncoArray-500K, ~7 million SNPs Time to grade 2/3 toxicity, n=3,874

	RAPPER n=2,010	RADIOGEN n=658	GenePARE n=495	UGhent n=311	CCI-BT n=252	CCI-EBRT n=148
Median age (yr)	68	72	65	65	65	68
Intermed/high risk	60%	81%	53%	74%	38%	92%
Prior surgery	0%	20%	0%	31%	0%	0%
Hormones	100%	70%	51%	64%	22%	49%
Median BED (Gy)	120	123	204	136	158	153

CCI=Cross Cancer Institute; BED=biological effective dose

Three new SNPs identified

p-values must be <5 x 10⁻⁸

SNP	MAF	Toxicity	HR (95% CI)	Р	BFDP
rs17055178	0.09	Rectal bleeding	1.95 (1.58, 2.43)	6.2x10 ⁻¹⁰	0.09%
rs10969913	0.05	Decreased stream	3.92 (2.50, 5.83)	2.9x10 ⁻¹⁰	1.07%
rs11122573	0.06	Hematuria	1.92 (1.53, 2.42)	1.8x10 ⁻⁸	1.96%

MAF = minor allele frequency; BFDP = Bayesian false discovery probability

Kerns et al 2019 JNCI May 16

Previously identified variants validated

SNP	MAF	Toxicity	HR (95% CI)	Р
rs17599026 <i>KDM3B</i>	0.07	Urinary frequency	1.55 (1.23, 1.95)	1.8x10 ⁻⁴
rs7720298 <i>DNAH5</i>	0.30	Decreased stream	1.43 (1.14, 1.78)	1.6x10 ⁻³
rs1801516 <i>ATM</i>	0.22	Overall toxicity	1.29 (1.07, 1.55)	6.3x10 ⁻³
rs7582141 <i>TANC1</i>	0.05	Overall toxicity	1.99 (1.33, 2.98)	8.3x10 ⁻⁴

MAF=minor allele frequency

Kerns et al 2019 JNCI

Fine scale mapping

- GWAS find associations between a genomic region and a trait
- It is assumed at least one causal variant exists
- Fine-mapping identifies the probable genetic variant (or variants)
- Less common variants with larger effects can be found

- Second independent signal
- rs147121532 with hematuria
- MAF 0.01%
- HR 4.43, 95% CI 2.35 8.33
- $P = 4.7 \times 10^{-6}$

Radiogenomics can increase mechanistic understanding

- Credible causal variants (CCVs) associated with differential expression of local protein coding gene (AGT)
- AGT encoding angiotensinogen is converted to the active enzyme angiotensin II by angiotensin converting enzyme
- Prior studies suggest angiotensin signaling may influence radiationinduced blood vessel wall injury and interstitial fibrosis
- Pathway analysis identified 'platelet adhesion to exposed collagen'

'platelet adhesion to exposed collagen'

- Platelet adhesion is the first step in the formation of a platelet plug, formed in response to blood vessel injury
- Collagens are involved in the process and are abundant in vascular epithelia
- Several collagen binding proteins are expressed on platelets e.g. integrins
- The integrin pathway was also associated with rectal bleeding

Fine-mapping identifies the probable genetic variant (or variants) and provides mechanistic understanding

Radiogenomics for particle beam therapy

Rs17599026 in KDMB3 associated with decreased urinary stream

Cohort	MAF	n	Radiation	HR (95% CI)
RGC	0.07	3,874	Photons	1.55 (1.23, 1.95)
PRRG	0.11	170	Photons	1.51 (0.56, 4.05)
NTMC	0.11	254	Protons	1.13 (0.49, 2.64)
PRRG	0.11	538	Carbon ions	0.63 (0.27, 1.49)

Kerns S, Rosenstein B, Tsuji H, Imai T, Saito S

Learning outcomes

- Studies in patients receiving therapeutic radiation can increase understanding of the genetics of radiation-related non-cancer diseases
- Genetic studies of radiation toxicity must allow for potential confounders and modifiers
- The genetic determinants of non-cancer effects will involve rare variants with large effects, low frequency variants with moderate effects and common variants with small effects

Learning outcomes

- Building cohorts with good quality data and sample collections is key and a consortium approach is required
- Study design considerations include: retrospective/prospective, casecontrol/cohort, time-point for assessing toxicity, allowing for baseline toxicity, harmonizing data collected using different scoring systems, variables to include in multivariable analyses, statistical power
- Studies should follow STROGAR reporting guidelines
- Fine-mapping identifies the probable genetic variant (or variants) and provides mechanistic understanding

Summary

- Radiogenomic studies of radiotherapy toxicity can increase understanding of the genetics of non-cancer diseases
- Collaborative work within the Radiogenomics Consortium has (and is) developing the methodology and best study designs by working with experts within and outside the radiation community
- The approaches can be applied to study the genetics of other non-cancer diseases of interest to the radiation epidemiology community

Further reading

- Bergom C, West CM, Higginson DS, et al. The implications of genetic testing on radiotherapy decisions: a guide for radiation oncologists. *Int J Radiat Oncol Biol Phys* 2019 Aug 2.
- Kerns SL, Fachal L, Dorling L, et al. Radiogenomics Consortium Genome-Wide Association Study Meta-analysis of Late Toxicity after Prostate Cancer Radiotherapy. J Natl Cancer Inst 2019 May 16.
- West CM, Barnett GC. Genetics and genomics of radiotherapy toxicity: towards prediction. *Genome Med* 2011 Aug 23;3(8):52.
- Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, Pharoah PD, Burnet NG. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. *Nat Rev Cancer* 2009 Feb;9(2):134-42

The genetic determinants of radiotherapy toxicity involve:

- A. Rare mutations with small effects
- B. Common single nucleotide polymorphisms (SNPs) with large effects
- C. Low frequency variants with moderate effects
- D. Only mutations and SNPs

The genetic determinants of radiotherapy toxicity involve:

- A. Rare mutations with small effects
- B. Common single nucleotide polymorphisms (SNPs) with large effects
- C. Low frequency variants with moderate effects
- D. Only mutations and SNPs

The best radiogenomic study designs:

- A. Are retrospective
- B. Are case control
- C. Use univariate analyses
- D. Follow STROGAR guidelines

The best radiogenomic study designs:

- A. Are retrospective
- B. Are case control
- C. Use univariate analyses
- D. Follow STROGAR guidelines

U.S. Department of Health & Human Services National Institutes of Health | National Cancer Institute

dceg.cancer.gov

1-800-4-CANCER

Produced September 2019