
Dale Preston, Ph.D. Biostatistician, Hirosoft International

Atomic Bomb Survivor Studies: Overview and Recent Findings



### Radiation Epidemiology & Dosimetry Course

National Cancer Institute

www.dceg.cancer.gov/RadEpiCourse

# Outline

#### 1. ABCC/RERF background

- Immediate effects of the bombs
- Early studies
- Major cohorts

#### 2. Dosimetry

- Survivor shielding and location
- Evolving dose estimates T57D → DS02
- Dose uncertainties

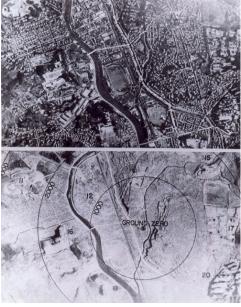
### 3. Risk Estimation

- Relative versus absolute risks
- Describing risk patterns
  - Relative risks and excess rates
  - Dose response
  - Effect modification
- Issues
  - Time-since-exposure vs attained age
  - Latent periods
  - Interactions
  - Interpreting site-specific risks

# **Short-term effects**

#### • Result of

- Blast (50% of energy)
- Heat (35% of energy)
  - Scorched wood up to 3.5km
- Radiation (15% of energy)


#### Cities largely destroyed

- Wooden structures burned up to ~2.5km from hypocenter
- Blast effects apparent over similar distance range

#### Populations decimated

- Hiroshima 110,000 -140,000 deaths
- Nagasaki 70,000 deaths
- > 60% mortality within 1km of hypocenter





### Health Effects Research 1945 - 1946

#### Japanese research groups

- Entered cities within days of bombings
- Carried out surveys of injuries and deaths

### • US research groups

- Medical teams began arriving in September 1945
- Efforts directed at cataloging acute radiation effects

### • US – Japan Joint Commission

- Characterize extent of early mortality
- Nature of acute effects
  - Nausea

Orapharyngeal lesions

Leukopenia

- Epilation
- Flash burns
- Bleeding



4

### ABCC Activities (1) 1947-1955

#### Pregnancy outcomes

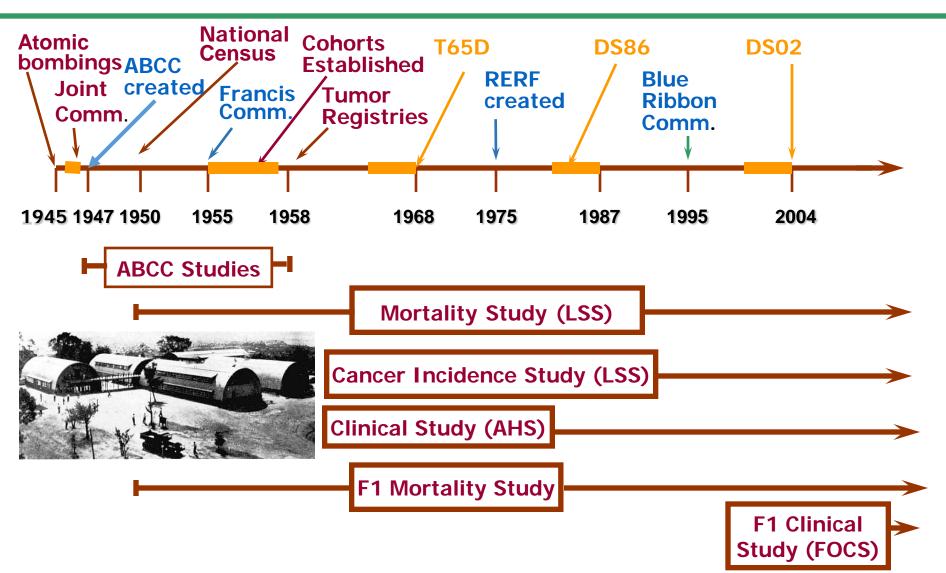
- 77,000 births 1947-1952
- Malformations, premature births, birthweight, sex ratio
- No significant effects

#### Leukemia

- Increase apparent by late 1940's
- Established leukemia registry
- Descriptive analyses in ill-defined population
  - No risk estimates

### ABCC Activities (2) 1947-1955

#### 1950 national census

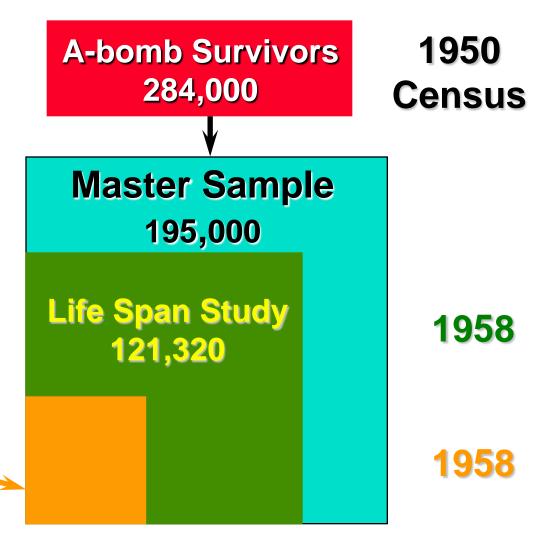

- ABCC managed data processing
- Special questionnaire for people who were in or near the cities at the time of the bombs used to define ABCC/RERF Master Sample

#### • Long-term study plan (Gil Beebe, Seymour Jablon)

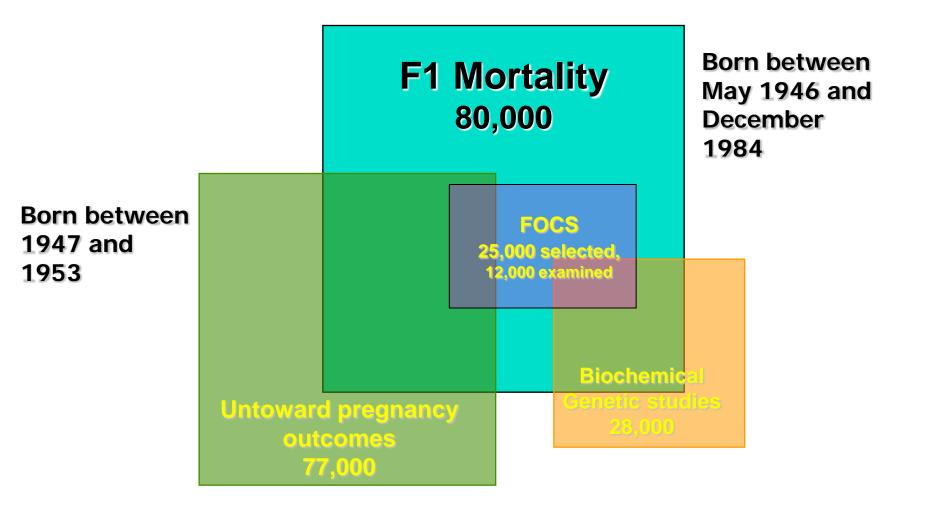
- Fixed cohorts of survivors, in-utero exposed, children
- Clinical cohorts of survivors and in-utero-exposed
- Mortality and cancer incidence follow-up
- Autopsy program
- Recognized need for individual dose estimates
  - Systematic program for collection of exposure data



## **A-bomb Survivor Studies**




### ABCC/RERF Cohorts Life Span Study (LSS)


Original LSS includes groups of non-military Japanese for whom followup data could readily be obtained:

- 1) All survivors < 2 km with acute effects
- Matched group of other survivors < 2 km</li>
- 3) Matched group of people who were 2.5-10km
- 4) Matched group of unexposed (not-in-city) individuals

Adult Health Study 22,000



## **ABCC/RERF - F1 study cohorts**



## ABCC-RERF cohorts In-utero cohort



- Pooled cohort combines overlapping clinical (1,606 members) and mortality (2,802 members) cohorts.
- Mortality and cancer incidence data are available for all members of the cohort.

# **ABCC/RERF Follow-up Programs**

#### Mortality

- Based on mandatory nation-wide family registration
- Updated on a three-year cycle

#### Cancer incidence

- Hiroshima & Nagasaki tumor registries (1958 present)
- ABCC pathology program 1958 1972
- Hiroshima & Nagasaki tissue registries 1973 present

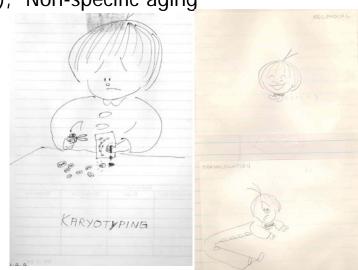
#### Leukemia and related disorders

- Leukemia registry 1950 1987
- Hiroshima & Nagasaki Tumor Registries 1958 present

#### Clinical Examinations

- Biennial exams
- 70-80% participation through 25 AHS exam cycles
- Adapted for use in F1 clinical study (FOCS)

#### Mail Surveys


• 1965 (Ni-hon-san study men), 1968 (women), 1978, 1991, 2008

# **ABCC Research 1958 - 1975**

- **Dosimetry** (Auxier, Kerr, Fujita, Kaul, Egbert, Cullings)
  - Development of location and shielding information
  - Introduction of first broadly accepted dosimetry system (T65D)

#### • Periodic LSS cancer mortality reports (Land, Beebe, Jablon, Kato)

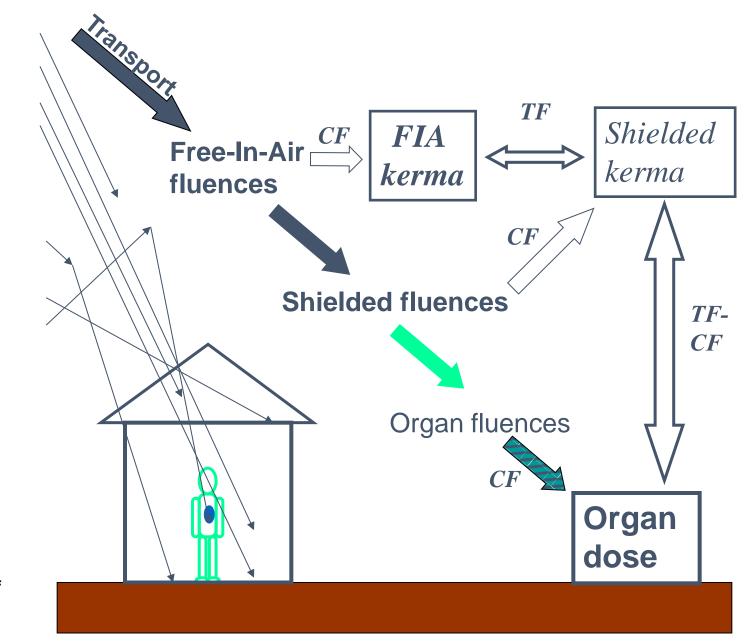
- Methodological developments & risk estimation
- Clinical studies
  - Cardiovascular disease (Ni-Hon-San), Non-specific aging
  - Thyroid and skin diseases
  - Radiation cataract
- Cytogenetics studies (Awa)
- In-utero
  - Physical growth and development
  - IQ
  - Mortality
- F1
  - Leukemia incidence
  - General mortality



# **Dosimetry**

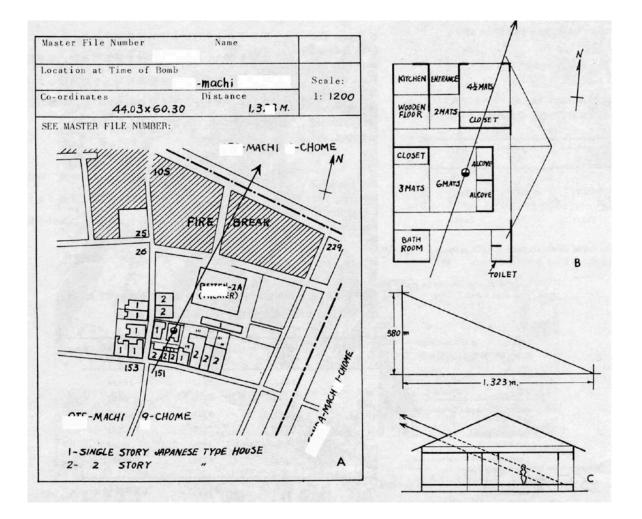


#### Location


- Specified as coordinates on fairly crude US army maps
  - Sought corroboration of location
  - Recorded to nearest 10m in each coordinate if detailed shielding history obtained and nearest 100m for others
- Recently refined coordinates based on additional archival information and GIS methods

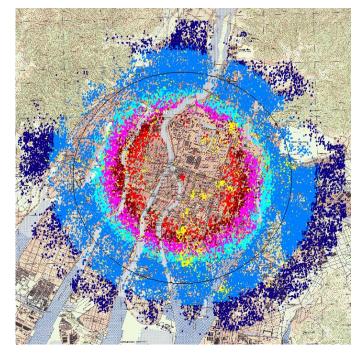
### External Shielding

- Crude shielding categories available for virtually all people of interest
- Detailed shielding histories for most survivors within 1.6km in Hiroshima and 2 km in Nagasaki


### Self shielding (organ dose)

• Shielding histories contain information on orientation and position

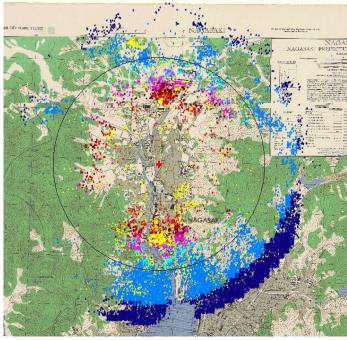



Courtesy of H. Cullings

### **Sample Shielding History**



# LSS Survivors within 3 Km


#### Hiroshima



#### Dose (mSv)

- < 5 5 1
  - 500 1000 1
- 5 100 1000 +

#### Nagasaki



+ Hypocenter

■ 100 – 200

200 - 500

unknown

\* LSS: Life Span Study Cohort

# **Dosimetry History**

#### Distance and acute effects

#### • Tentative 1957 Dosimetry (T57D)

- Declassified gamma and neutron "air dose" curves by city
- Crude allowance for shielding
- Never used for routine analyses

#### • T65D

- City-specific gamma and neutron equations for free-in-air kerma versus distance
- Limited validation from physical measurements (TLD and Co<sup>60</sup> activation)
- External shielding effects described as transmission factors
  - House shielding based on nine-parameter model or average values
  - Globe method (look at shadows in model conditions)
  - Nagasaki factory model

### **Dosimetry History DS86** (Fujita, Kerr, Egbert)

- Motivated by concerns about T65D neutrons
- Involved review of all aspects of bombs, transport, and shielding
- Used (then-)modern monte-carlo transport codes
- Provided shielded kerma and dose estimates for 15 tissues with up to six components
- Reduced neutron doses (especially for Hiroshima) and transmission factors for houses
- Some validation by measurements, but some questions about neutron doses lingered

## **Dosimetry History DS02** (Fujita, Kerr, Egbert, Cullings)

- Possibility of increased Hiroshima neutrons at distance received much attention
- Extensive program of validation measurements and inter-laboratory comparisons
- Additional review of bomb parameters
  - Hiroshima yield increased from 15 to 16kt
  - Hiroshima height of burst 580  $\rightarrow$  600
  - Nagasaki prompt gamma per kt increased by 9%
- Further review of shielding effects
  - New models for large wooden buildings and Nagasaki factories
  - Allowance for distal terrain shielding

### **Dose Uncertainty** (Jablon, Gilbert, Pierce, Stram Vaeth, Cullings)

- Uncertainty recognized from the beginning, but
- Until recently little effort to allow for or assess impact of uncertainty on risk estimates

#### Types of uncertainty

- Grouping (Berkson) errors
- Error in individual location / shielding information (classical error)
- Shared errors yield, shielding parameters etc

• Current doses corrected for 35% random errors using a regression calibration method in which  $D_{est}$  is replaced by  $E(D_{true} \mid D_{est})$ 

## **Dosimetry Current and Future Developments**

#### Refinement of survivor locations

- Shielding history reassessment
- GIS-based locations

#### Improved dose uncertainty adjustments

- New adjustment methods
- Allowance for both grouping and measurement
- Consideration of shared uncertainties

# RERF Research 1975-1995

#### Improved LSS cancer mortality reports

- Dose-response shape & effect modification
- Solid cancer and leukemia incidence reports
- Breast cancer incidence studies (Land, Tokunaga)
  - Precursor to more recent site-specific incidence papers

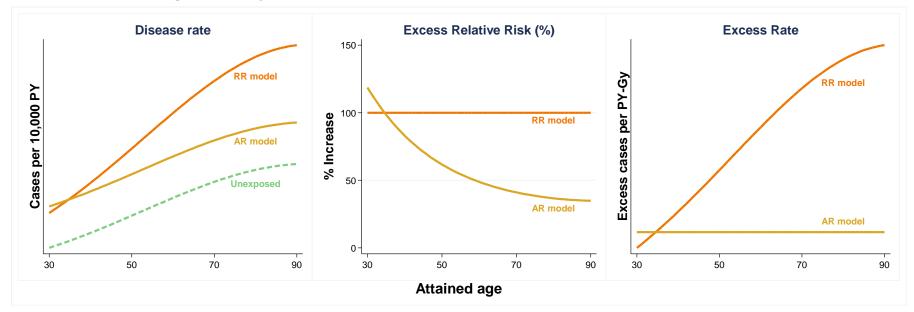
### • F1 studies

• Biochemical and cytogenetics studies

#### • In-utero

- Mental retardation, School performance
- Cancer mortality, leukemia incidence

# **RERF Research 1995 - present**


- Increasing emphasis on site-specific cancer incidence
- Examination of joint effects of radiation and other risk factors
- Emerging evidence of non-cancer mortality risks

#### Analyses of clinical data

- Noncancer disease morbidity
- Longitudinal laboratory measurements (blood pressure, cholesterol, inflammatory markers)
- Cataracts

## The Old Debate Relative versus Absolute Risks

 Do excess rates increase or become relatively less important as time goes by?



- By early 1980's it was agreed that constant relative risk provided a better description solid cancer risks
- Leukemia excess risk decreased over time and neither simple description was adequate

# **Evolving Understandings Excess Risk is Not a Number**

• (Relative) risk depends on sex and age at exposure



- Are excess relative risks constant in attained age (time) given age at exposure and sex?
- How should we interpret sex differences in the ERR?

## **Evolving Understandings Describing Excess Risks**

Excess relative risk (ERR) model

 $\lambda_o(a,s,b)[1+\rho(d)\varepsilon_{\scriptscriptstyle R}(s,e,a)]$ 

Excess absolute rate (EAR) model

 $\lambda_o(a,s,b) + \rho(d) \varepsilon_A(s,e,a)$ 

 $\lambda_o(a, s, b)$  Baseline (zero dose) risk function (*a* age at risk; *s* sex; and *b* birth cohort)

 $\rho(d)$  Dose-response shape , e.g. linear, linear-quadratic, threshold, ...

 $\mathcal{E}(s, e, a)$  Effect modification function (e age at exposure)

# **Evolving Understandings ERR versus EAR description**

• ERR and EAR are (in principle) equivalent descriptions of the excess risk

$$\varepsilon_R(s,e,a) = \frac{\varepsilon_A(s,e,a)}{\lambda_0(a,s,b)}$$

- Both ERR and EAR descriptions are important
- ERR and EAR provide complimentary information
  - Patterns in ERR effect modifiers may reflect factors such as sex and birth cohort effects in baseline rates
- Description may be simpler or more informative on one scale than the other

# Describing Sex and Age-Time Effects

#### Smoothing the excess is essential to understanding

- Subset analyses have little power
- Uncertainty can make it difficult to see patterns

#### Requires choice of variables and model form

- RERF analyses generally based on log-linear descriptions
- Level of detail depends on amount of data

$$\varepsilon(s, e, a) = \exp(\beta_s + \theta e + \gamma \log(a))$$

exp(β<sub>f</sub>) / exp(β<sub>m</sub>) female:male excess (relative) risk ratio
 exp(10 θ)-1 % change per decade increase in age at exposure
 γ power of age at risk

# **Describing Sex and Age-Time Effects**

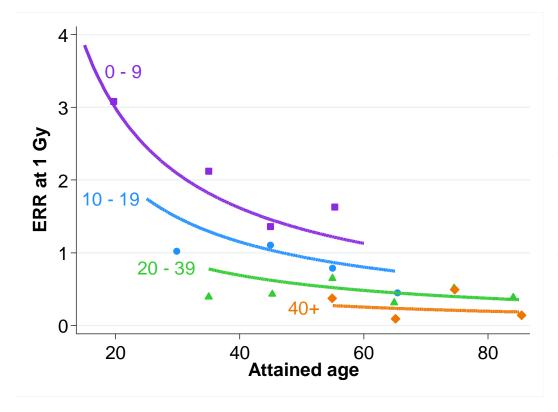
# • LSS data suggest that ERR varies with attained age (time since exposure)

• Difficult to conceive of a radiation carcinogenesis mechanism leading to time-constant ERR

#### • Extensions of basic model possible

- Sex-dependent age and age at exposure effects
- Other functions of age and age at exposure
- However, available data usually too limited to support such detailed descriptions

### Solid Cancer Incidence 1958-98


| By age at          | exposure |              |        |                     |       |  |  |  |
|--------------------|----------|--------------|--------|---------------------|-------|--|--|--|
| Age at<br>exposure | People   | Person years | Cases  | Estimated<br>Excess | AR%*  |  |  |  |
| Male               |          |              |        |                     |       |  |  |  |
| 0-19               | 21,571   | 632,341      | 2,409  | 150                 | 13%   |  |  |  |
| 20-39              | 8,522    | 229,518      | 2,569  | 86                  | 8%    |  |  |  |
| 40+                | 12,809   | 178,419      | 2,991  | 61                  | 5%    |  |  |  |
| Total              | 42,902   | 1,040,278    | 7,969  | 297                 | 9%    |  |  |  |
| Female             |          |              |        |                     |       |  |  |  |
| 0-19               | 24,169   | 755,387      | 2,186  | 240                 | 24%   |  |  |  |
| 20-39              | 21,561   | 679,452      | 4,423  | 233                 | 11%   |  |  |  |
| 40+                | 16,795   | 289,614      | 2,870  | 83                  | 6%    |  |  |  |
| Total              | 62,525   | 1,724,453    | 9,479  | 556                 | 13%   |  |  |  |
| Total              | 105,427  | 2,764,731    | 17,448 | 853                 | 11%   |  |  |  |
| B                  |          |              |        |                     |       |  |  |  |
| By colon d         | ose      |              |        | Estimate d          |       |  |  |  |
| Colon<br>Dose      | People   | Person years | Cases  | Estimated<br>Excess | AR%   |  |  |  |
| < 0.005            | 60,792   | 1,598,944    | 9,597  | 3                   | 0%    |  |  |  |
| - 0.1              | 27,789   | 729,603      | 4,406  | 81                  | 2%    |  |  |  |
| - 0.2              | 5,527    | 145,925      | 968    | 75                  | 8%    |  |  |  |
| - 0.5              | 5,935    | 153,886      | 1,144  | 179                 | 16%   |  |  |  |
| - 1                | 3,173    | 81,251       | 688    | 206                 | 30%   |  |  |  |
| - 2                | 1,647    | 41,412       | 460    | 196                 | 43%   |  |  |  |
| 2+                 | 564      | 13,711       | 185    | 111                 | 60%   |  |  |  |
| Total              | 105,427  | 2,764,732    | 17,448 | 853                 | 11% * |  |  |  |

\* Attributable risk % for people with doses > 0.005 Gy

Preston et al 2007 LSS Solid cancer Radiat. Res.

- Information on sex and agetime patterns depends (only) on radiation-associated ("excess") cases
- Excess cases not explicitly identified
- Number of relevant cases is relatively small, especially for specific sites
- No evidence against linear dose response


### Solid Cancer Mortality 1950 – 2000 Excess Relative Risk Temporal Patterns

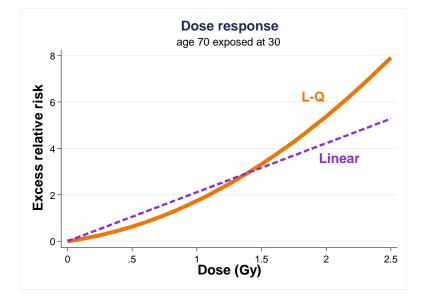


- Decrease proportional to age -0.9
- ERR decreases by 29% per decade increase in age at exposure
- F:M ratio 1.9

Ozasa et al 2012 LSS Report 14, Radiat. Res.

### Solid Cancer Mortality 1950 – 2000 Excess Rate Temporal Patterns

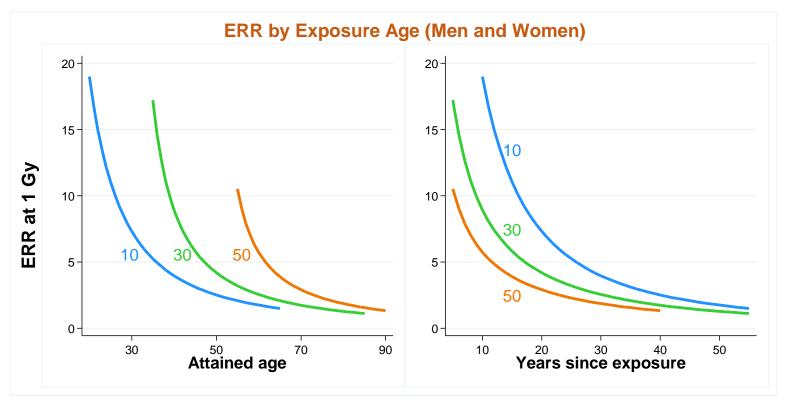



Ozasa et al 2012 LSS Report 14, Radiat. Res.

### LSS Leukemia Mortality 1950-2000

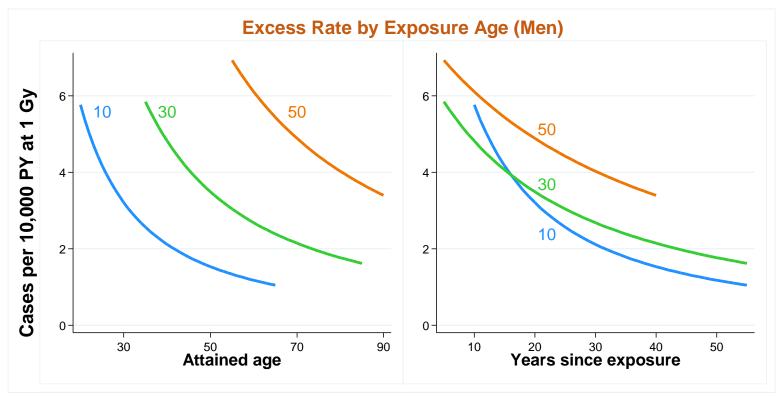
| By age at         | exposure |                 |       |                     |              |  |
|-------------------|----------|-----------------|-------|---------------------|--------------|--|
| Ageat<br>exposure | People   | Person<br>years | Cases | Estimated<br>Excess | AR%*         |  |
|                   |          | Male            |       |                     |              |  |
| 0-19              | 16,827   | 783,098         | 60    | 26                  | 58%          |  |
| 20-39             | 6,411    | 229,330         | 49    | 12                  | 42%          |  |
| 40+               | 12,449   | 227,441         | 47    | 13                  | 41%          |  |
| Total             | 35,687   | 1,239,869       | 156   | 52                  | 48%          |  |
| Female            |          |                 |       |                     |              |  |
| 0-19              | 18,569   | 891,288         | 42    | 16                  | 51%          |  |
| 20-39             | 16,750   | 702,633         | 57    | 17                  | 41%          |  |
| 40+               | 15,605   | 350,566         | 41    | 9                   | 36%          |  |
| Total             | 50,924   | 1,944,487       | 140   | 43                  | 43%          |  |
| Total             | 86,611   | 3, 184, 355     | 296   | 94                  | <b>46</b> %  |  |
|                   |          |                 |       |                     |              |  |
| By marrow dose    |          |                 |       |                     |              |  |
| Marrow<br>Dose    | People   | Person<br>years | Cases | Estimated<br>Excess | AR%          |  |
| < 0.005           | 36,502   | 1,342,168       | 89    | 0                   | 0%           |  |
| - 0.1             | 30,898   | 1,135,582       | 69    | 4                   | 6%           |  |
| - 0.2             | 6,006    | 223,701         | 17    | 4                   | 25%          |  |
| - 0.5             | 6,993    | 256,584         | 31    | 13                  | 41%          |  |
| - 1               | 3,512    | 129,053         | 27    | 18                  | 68%          |  |
| 1+                | 2,700    | 97,267          | 63    | 55                  | 87%          |  |
| Total             | 86,611   | 3,184,355       | 296   | 94                  | <b>46</b> %* |  |

 Despite smaller number of excess cases, a considerably larger proportion of the cases are radiation-associated


• Non-linear dose response



\* Attributable risk % among survivors with marrow dose > 0.005 Gy


Ozasa et al 2012 LSS Report 14, Radiat. Res.

### Leukemia incidence 1950 – 2001 Excess Absolute Rate



- Decrease proportional to age -1.1 and tsx-0.8
- No additional age-at-exposure effect
- No sex difference

### Leukemia incidence 1950 – 2001 Excess Rate



- Decrease proportional to age -1.4
- Increases by 50% per decade increase in exposure age
- F:M ratio 0.66
- Naga:Hiro ratio 0.52

Hsu et all 2013 LSS Leukemia risks, Radiat. Res.

## **Related Issues Time-Since-Exposure**

#### Solid cancer

- LSS data suggest that largest risks occur late in life regardless of age at exposure
- EAR TSE model fits worse than attained-age model without an agexby-TSE interaction

#### • Leukemia

- TSE models motivated by EAR decrease and the belief that the excess disappeared after 15 to 20 years
  - Incorrect for ALL and AML
  - Possibly true for CML
- TSE models involve significant agex-by-TSE interaction
- Attained age models provide comparable fit without need for interaction

## Radiation and Other Risk Factors Interaction and Effect Modification

### Interaction

• Joint effect is not simply the sum of the radiation effect (*R*) and the other effect (*E*).

 $\mathbf{f}(R,E)\neq R+E$ 

• Joint effect model needs to include interaction term, e.g. *R* + *E* + *R E* 

### Effect Modification

Radiation effect differs for different levels of the other risk factor

 $f(R | E = e_0) \neq f(R | E = e_1)$ 

- Radiation effect model should depend on E
- *E* need to have an effect when *R*=0
- Radiation effect model should depend on E

## Radiation and Other Risk Factors Confounding

#### Occurs when

- Risk depends on both R and E
  - *E* may or may not be an effect modifier
  - May be no interaction between R and E
- Radiation exposure/dose is correlated with level of E
- Effect of *E* is not included in risk model
- Results in biased estimates of radiation effect
- Model joint effect of R and E

## **Joint Effect Models**

### Focus on relative risk models

- ERR models are the most natural way to describe interactions
- Use smoking and radiation as illustration

### Simple models

- Additive: Rate = BKG<sub>ns</sub> (1 + ERR<sub>smk</sub> + ERR<sub>rad</sub>)
  - No interaction or effect modification
  - ERR<sub>smk</sub> and ERR<sub>rad</sub> are relative to rates for unexposed non-smokers
- Multiplicative: Rate =  $BKG_{ns}(1 + ERR_{smk}) (1 + ERR_{rad})$ =  $BKG_{ns}(1 + ERR_{smk} + ERR_{rad} + ERR_{smk}ERR_{rad})$ 
  - ERR<sub>rad</sub> the same for all levels of smoking
  - ERR<sub>rad</sub> relative to rates that include smoking effect

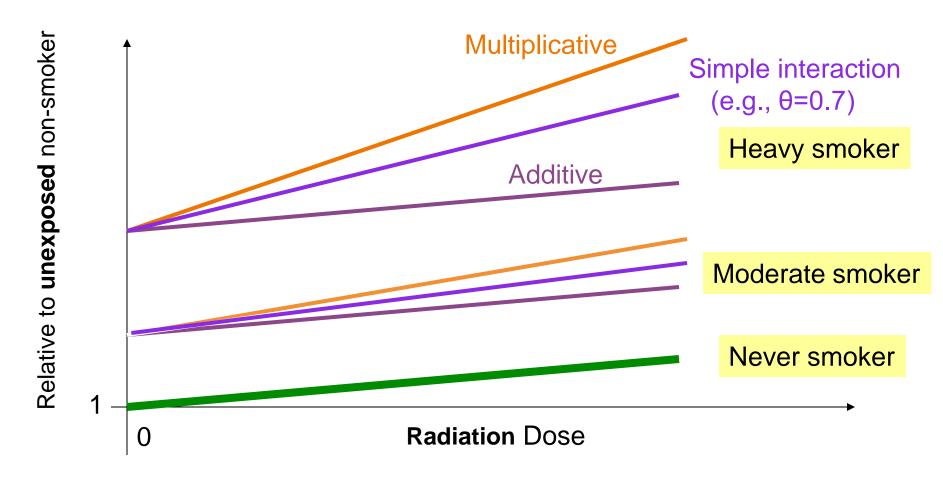
### Radiation and Other Risk Factors Interaction Models

#### Simple generalized interaction model

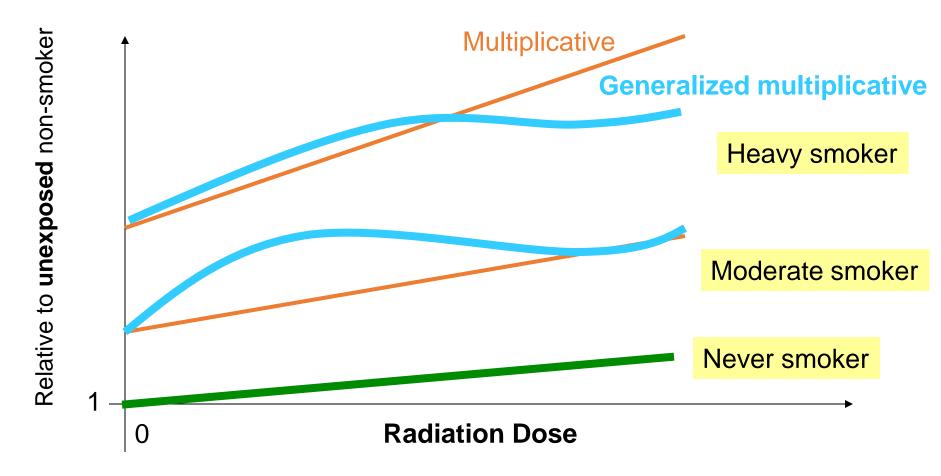
• Rate = BKG (1 + ERR<sub>smk</sub> + ERR<sub>rad</sub> +  $\theta$  ERR<sub>smk</sub> ERR<sub>rad</sub>)

simple additive ( $\theta$ =0) and multiplicative ( $\theta$ =1) models are special cases

### Generalized additive model


• Rate = BKG (1 +  $ERR_{smk}$  +  $ERR_{rad}$  \*f(smk))

f(smk) is a function of smoking behavior such that f(smk)=1 for nonsmokers


### Generalized multiplicative model

• Rate = BKG  $(1 + ERR_{smk})(1 + ERR_{rad} * f(smk))$ 

### Models Additive or Multiplicative ?



### Models Additive, Multiplicative or General?

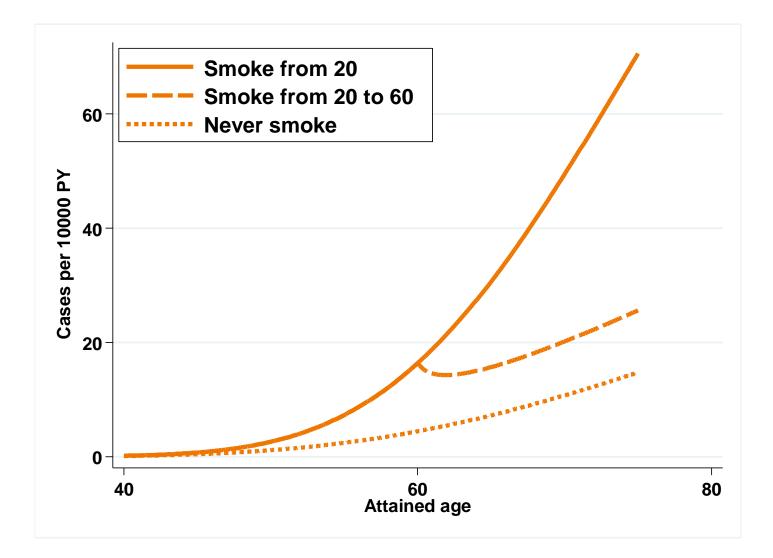


## Lung Cancer Rate Model

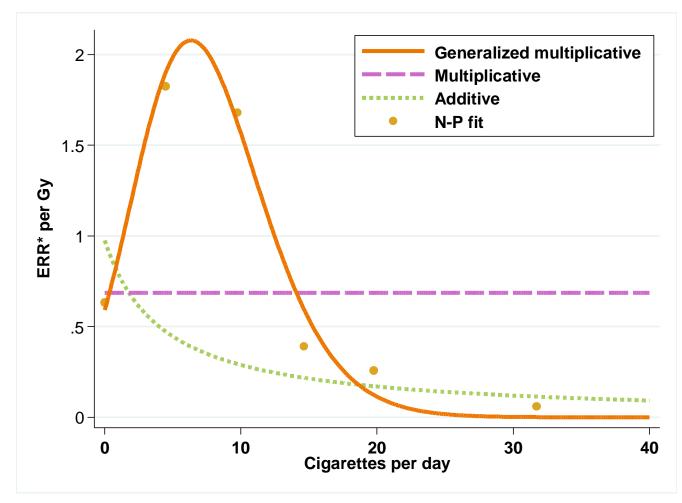
- Background rates (unexposed never smokers)
  - Sex-specific log quadratic spline in log age
  - Additional effects for year of birth, sex, city, location (in city or not)

### Radiation ERR

• ERR<sub>rad</sub>=  $\beta_{sex}$  dose • age<sup>y</sup> • exp{ a agex }

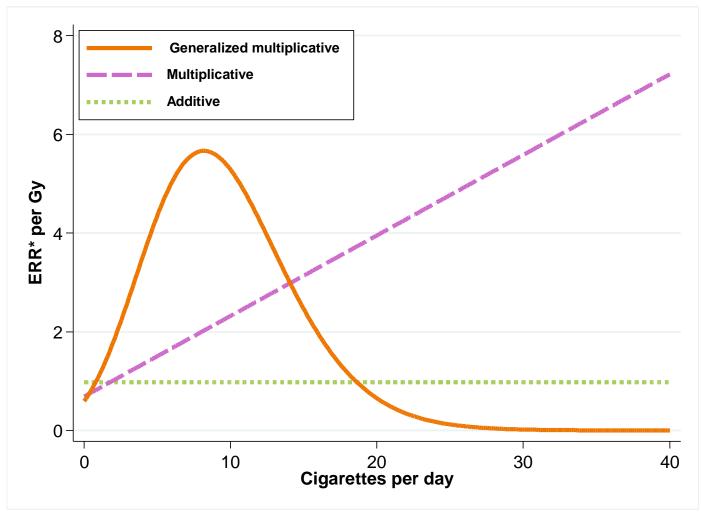

### Smoking effect

- Dependent on smoking duration (*dur*), intensity(*pkday*), time since quitting (*tsq*) and pack-years (*pkyr* = *dura* • *pkday*)
- $ERR_{smk} = \delta_{sex} pkyr exp{\zeta pkday + \eta log(dur) + \phi log(1+tsq)}$


### Generalized interaction

•  $ERR_{rad(smk)} = ERR_{rad} \cdot exp(\psi_1 pkday + \psi_2 pkday^2)$ 

## **Smoking Effect on Rates**




## **Smoking-Radiation Interaction (1)**



\* Relative to unexposed with same smoking history

## **Smoking-Radiation Interaction (2)**



#### \* Relative to unexposed non-smoker

### LSS Radiation and Smoking in the LSS Summary

- Smoking effects on lung cancer were modeled by intensity(rate) and duration.
- Neither simple additive nor multiplicative models are sufficient to model the joint effect of smoking and radiation.
- The interaction appears to be larger at lower smoking rates than higher rates.

## **Interpreting Site-Specific Risks**

### • Difficult to interpret and generalize effect modification

- ERR sex effects mirror baseline sex effects, but baseline effects may be similar across populations
- Age at exposure effects in the ERR may depend on birth cohort or period effects on baseline rates
- Can also be problems in generalizing EAR patterns

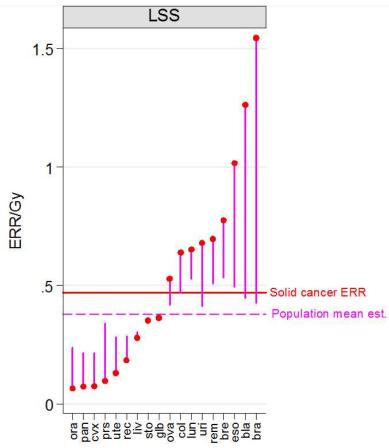
### • Site-specific differences in patterns are likely to exist

- However much of observed variability is consistent with random variation
- Formal statistical tests generally lack power to detect real differences
- Statistical methods for shrinking estimates toward a central value are likely to lead to improved estimators of risk levels, sex effects and agetime patterns

## Adjusted Site-Specific Risk Estimates A Simple/Simplistic Example

#### • LSS solid cancer mortality 1950 – 1997\*

- 86,572 in-city members of the LSS
- 9,335 solid cancer deaths
  - ~440 associated with radiation exposure
- ERR model for all solid cancers with sex, attained age, and age at exposure effects (similar to incidence model)


### • ERR models also fit for 18 specific "sites"

- Site-specific ERR MLEs range from < 0.1 (oral cavity, pancreas, prostate) to 1 or more (breast, bladder, brain)
- Estimated number of excess cases range from less than 3 (prostate oral cavity, cervix) to more than 80 (stomach, lung)

### Adjusted Site-Specific Risk Estimates A Simple/Simplistic Example

- Use Bayesian methods to describe population mean and variance and produce adjusted site-specific risk estimates
  - "True" site-specific risk estimates taken as sample from a N( $\rho$ ,  $\theta^2$ ) distribution
  - Non-informative priors for  $\rho$  and  $\theta^2$
  - Posterior distributions for site specific risks and population parameters described using MCMC methods (WinBugs software) and summarized using the posterior mean values
  - Simplifying assumption: effect modifiers have same form for all sites
  - Implies that only level of the risk (ERR) varies by site

## Adjusted Site-Specific Risk Estimates A Simple/Simplistic Example



MLE's shown as red dots vertical lines extend to posterior mean estimate

- Unadjusted estimates range from 0.06 to 1.6
- Adjusted estimates range from 0.2 to 0.5
- Considerable reductions
  for largest risk estimates
- Suggests that statistical uncertainties are relatively large
- More realistic approach would allow nature of effect modification to vary across sites
  - Complicates calculations and summarization

## **Other major RERF findings**

### Cardiovascular disease

- Dose response seen for heart dose and stroke at doses less than 1 Gy
- Excess cases much larger than for leukemia but somewhat less than solid cancers

#### In-utero exposure

- Radiation effects on school performance and on growth and development
- Increased solid cancer risks after childhood effect seems to be smaller than that seen in those exposed as children
- Little indication of childhood cancer effects, but power is low

### Children of survivors

- No evidence of radiation effects major malformations, birth weight, or sex ratio
- No indication of effects on cancer or non-cancer disease risks

## **Summary and Conclusions**

 Accumulating data and modern analytical methods make it possible to investigate radiation effect modification in some detail

#### Data are limited even in the largest cohort

- Especially true when modeling interactions
- Both ERR and EAR descriptions provide equally important and complementary information
  - Attained age is an important factor in both
  - Generalization of age at exposure and sex effects can be difficult
- Pooled analyses may be useful in looking at effect modification
- More work is needed to address issues related to the interpretation of site-specific risks

## **Acknowledgments**

### We stand on the shoulders of giants

Gil Beebe, Seymour Jablon, Jim Neel, Jack Schull

# ABCC/RERF scientists and staff who made the ideas a reality

George Darling, Howard Hamilton, Tetsuo Imada, Hiroo Kato, M. Kanemitsu, Bob Miller, Kenji Omae, Itsuzo Shigematsu and hundreds more

#### Collaborators

• Old

Akio Awa, Harry Cullings, Saeko Fujiwara, Shochiro Fujita, Sachiyo Funamoto, Kazunori Kodama, Charles Land, Kiyo Mabuchi, Nori Nakamura, Don Pierce, Elaine Ron, Yukiko Shimizu, Michiko Yamada

• New

Kyoji Furukawa, Eric Grant, Hiromi Sugiyama, Ritsuko Sakata, Kotaro Ozasa

## **Questions and Answers**

U.S. Department of Health and Human Services National Institutes of Health | National Cancer Institute www.dceg.cancer.gov/RadEpiCourse 1-800-4-CANCER Produced May 2015