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Physics is HARD even for physicists!

“Physics is very muddled again at the moment;
it is much too hard for me anyway, and | wish |
were a movie comedian or something like that
and had never heard anything about physics.”

-Wolfgang Pauli (1900-1958)

Pioneer of Quantum Physics
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Learning Objectives

= Difference between ionizing and non-ionizing radiation

= Basic concepts of the nucleus and nuclear particles involved in
radioactive decay

= Difference between radioactivity and radiation

* Processes that result in emission of radiation

= How radiation interacts with tissue (because these lead to “dose”)
= Definition of dose quantities and units

= Sources of radiation exposure in everyday life
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Physics Principles



ENERGY is the fundamental concept in Radiation Dosimetry
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ENERGY is defined as the “capacity to do work”

= Kinetic energy — form of energy
possessed by virtue of motion

= Potential energy — stored

energy possessed by virtue of
position, internal stresses,
electric charge, and other

factors

= May exist in various forms

= Measured in units of joules (J)
or electron volts (eV)

1eV=160218x10"°J
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Understanding how ENERGY is transferred is necessary
for understanding radiation dose
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ENERGY is conserved. It can be neither created or destroyed, only
transferred from one system to another or from one form to another.
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ENERGY is transferred by “FORCES”
* )

Only four fundamental FORCES are recognized in physics:
(1) Strong,

(2) Electromagnetic,
(3) Weak, and
(4) Gravitational (in order of decreasing strength).

These fundamental forces account for why the nuclei of all atoms
stay together and also explains radioactive decay.
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How are ENERGY and FORCES related to Radiation
Epidemiology and Dosimetry?

= Radiation Dosimetry refers to the determination of the amount of
radiation energy absorbed by (“transferred to”) a substance or biological
material (human body, tissues, organs)

= ENERGY and “how it is transferred” explains radioactivity, and are
relevant for understanding where radiation comes from and how it
interacts with materials

= Radiation Epidemiology helps us understand the health effects
associated with a radiation exposure

= Therefore, the principles of radiation ENERGY and FORCES provide
logical links for understanding Radiation Dosimetry and Radiation
Epidemiology
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Electromagnetic Spectrum

THE ELECTROMAGNETIC SPECTRUM
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lonizing versus Non-ionizing Radiation

Radiation, in our context, is energy in the form of high speed particles
or electromagnetic waves.

= lonizing radiation has enough energy to remove bound electrons,
causing atoms to become charged or “ionized” (E > 10-33 eV)
o Examples are x-rays, gamma rays, electrons

= Non-ionizing radiation does NOT have enough energy to removed
bound electrons (E < 10-33 eV)

o Examples are microwaves, radar, and visible light
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The Atom and
Radioactive Decay



Bohr Model of the Atom

= Atoms consist of a nucleus
surrounded by orbiting electrons
(or electron clouds)

& protons
+ 6 neutrons

= Nucleus contains protons and
neutrons

- Q electron
Electron Proton Neutron e t
proton
Symbol > o P @ " Q 0 neutron
Charge -1 +1 0 Carbon atom
\ J

Relative \
mass 1/1836 1.0073 1.0087 Diameter of nucleus ~10'2 cm
(amu) Diameter of atom ~10-¢cm
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Atomic Nomenclature (1)

= Atomic symbol X = element symbol

= Atomic number Z = # protons

= Mass number A = # protons + neutrons Z

6 protons
+ 6 neutrons

Q electron

® o C or C-12

o neutron

Carbon atom 6

NATIONAL CANCER INSTITUTE
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Periodic Table of the Elements

Name —»

Atomic Weight
Electrons per shell —» -

M#umr(umufnrm) Subcategory in the metal-metalloid (color of backg
GAS LIOUID SOLID UNKNOWN I Alkali metals M Lanthanides  Metalloids % Unknawn chemical properties

W Alkaline earth metals 9 Actinides 1 Reactive nonmetals
1 Transition metals 1 Post-transitionmetals  * Nable gases

VI e VIIIB VIIIB

) NATIONAL CANCER INSTITUTE
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Atomic Nomenclature (2)

= |sotopes (same chemical element or Z)

1231 , 1%?311, 1231 , 1%21, 12;1 , 1%21, 125?1 , 12:(3)1, 13%1 , 1%%1

= |[sobars (same A)
1316, 1315h, 131Te , 121, 131Xe, 131Cs
= |[sotones (same # neutrons)
123Cd, 128In, 127Sn, 128sb, 129Te
= Metastable states (excess energy state)

13011 (half-life 9 minutes), 3431 (half-life 1.4 hours)

NATIONAL CANCER INSTITUTE
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Mass of an atomic nucleus is always smaller than the
sum of rest masses of components

Mass Defect Binding Energy
2p + 2n

A helium nucleus has slightly - + - 2
less mass than the total mass BE [Zmp (A-Z)m“ Z m] c

of 2 protons and 2 neutrons.

This missing mass is called P Q Qo
the mass defect, and the L .

energy equivalent of the

mass defect is the binding 0 °
energy of the helium nucleus. Nucleus Separated nucleons

(smaller mass) (greater mass)

mn

4.0016 - 2 X (1.0073)+ 2 X (1.0087)=0.0304 amu X 931.5 MeV/c* _ 5o 3 MeV

amu c?

Binding energy explains the source of the energy released during
radioactive decay
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Nuclear Binding Energy Curve

Binding energy per nuclear
particle (nucleon) in MeV

) NATIONAL CANCER INSTITUTE
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Nuclear Decay

Plot of p vs n for stable nuclides

= Transformation of unstable atoms towards

more stable conditions is called nuclear
transformation or radioactive decay

= Nuclear transformation occurs because of

instability in neutron-to-proton ratio or
because nucleus in excited state from
previous transformation

= Radioactivity is property of unstable atoms

Mumber of neutrons

transforming to more stable configuration,

releasing energy in form of photons or
charged particles — radiation!!!
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“Activity” is the strength of radioactive source

= Unit of radioactivity historically was the Curie and
was defined to be equal to the disintegration rate
of 1 gm of 226Ra or 3.7 x 109 disintegrations per
second (d/s)

= The units of radioactivity in the international
system of units is the Becquerel (Bqg) which is
equal to 1 d/s.

1 Bgq =27 pCi
1 kBq = 27 nCi Marie Curie
1 MBq = 27 pCi
1 GBq = 27 mCi
1 TBq =27 Ci
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Radionuclide Half-Life

= Half-life is the length of time for

half of the atoms of a given
nuclide to decay
A

= Half-life determines the rate at

which nuclides release radiation Accumulating
“daughter”
(energy) isotopes

= The half-life is a unique Surviving
characteristic of each nuclide L
and range from millionths of : ; : ;
a second to millions of years Time (half-lives)

Copyright @ Pearsen Education, Inc.. publishing as Banjamin G
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Emitted radiation “transfers” energy, resulting in “dose”

Alpha particles @ &:% = ® —A \

Beta particles B &

Gamma rays Y

paper perspex lead
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Alpha Decay (1)

= All elements heavier than lead are (44 o 3
— X
unstable; most decay by alpha \

emission
Parent Daughter Alpha

= Alpha particle consists of 2 protons Particle
and 2 neutrons

o _ Q= [mparent - (mdaughter + malpha)]cz
= Disintegration energy (Q-value)

determined by difference in rest

masses of the reactants and products Example:
= Typical Q-value is 4 to 6 MeV, with 283Ra — “E¢Ra + 5He + 4.78 MeV
most appearing as kinetic energy of .
the alpha particle (conservation of Half-life 1600 years
momentum)

NATIONAL CANCER INSTITUTE 23



Alpha Decay (2)

Alpha decay modeled as quantum tunneling

Alpha decay is monoenergetic through a Coulomb barrier
102
Tunneling model of
4500 - 15[ * e Thorium series ) alpha emission
Po-210 10 o wUranium series
4000 1 0 %‘ DActinium series
3500 | Po-209 Am-241 t 10 ' cMNeptunium series %. ook
172 4
3000 1 Pu-239 ® 10} - s
2 2300 ~raa0e % g (N
L 000 — Pu-239 1r ‘.’ o w10 H | | I B AR A
E — Am-241 “g |[ || || mk\-_.
1500 - 10°F ﬂ:!o UV
| ® 1 1 1
1000 T Ml , , 10 20 30 40
500 - 4 6 8 10 , ,
) I I Alpha kinetic energy (MeV) Separation of centers (fermis)

4000 4200 4400 4800 4800 5000 5200 5400 5600 5800 6000
Alpha particle energy (KeV) B

Geiger-Nuttal Law 1Og(f1/2)=A+@

Theory of alpha decay
http://www.physics.usyd.edu.au/teach_re
NATIONAL CANCER INSTITUTE s/imp/doc/gp_alpha_decay.pdf 24



http://www.physics.usyd.edu.au/teach_res/mp/doc/qp_alpha_decay.pdf

Nuclear Fission

Some heavy nuclei can split into
several smaller fragments plus

neutrons.
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Beta Decay (1)

Type of radioactive decay in which an energetic electron or
positron is emitted from an atomic nucleus.

In B decay, there are 3 processes:
n—>p+p+ V (negative B decay) €< n:p ratiotoo high
p—>n+pt+v (positive B decay) < n:p ratio too low

p+e —>n+vVv (electron capture, not discussed)

Beta-minus Decay Beta-plus Decay
Carbon-14 Hitrogen-14 Carbon-10 Boron-10
- + - -
B Antineutrino Electron . B . Neutrino Positron
- 4+ @ 4+ ¢ g + ¢ 4+ ©
& protons 7 protons & protons 3 protons
2 neutrons 7 neutrons 4 netrons 5 nentrans

NATIONAL CANCER INSTITUTE
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In ( decay, there are 3 processes:


n ( p + (- +  

[image: image1.wmf]n


   (negative ( decay)


p ( n + (+ + (     (positive ( decay)


p + e- ( n + (     (electron capture, not discussed) 
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Beta Decay (2)

Because the energy of the recoil nucleus is essentially zero, the Q
value is shared between the beta particle and the “invisible” neutrino,
resulting in an energy spectrum

Positron energy spectrum from
5 beta decay of %4 Cu
& D e
0 = o
EE Yo, .- et
20 ®Ni
o 2 S
=0
© = {( Emax
T8 Q of the reaction
Y = 0.653 MeV

0 0.2 0.4 0.6
Positron kinetic energy in MeV
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Neutrinos everywhere, but contribute negligible dose

Neutrinos have no charge and tiny, but finite, mass — weakly interacting

Melectron

Myeutrino 4 X106 SEat

14 41
§ T4y
i 383 »:” :"Jéi’igf’}»
3 135 o ‘#;‘4 'i,'
| &= REEREEE

FACT: about 65 million neutrinos pass S
through your thumbnail every second. L

Super-Kamiokande Neutrino Detector (Japan)
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Gamma ray Emission

= Nuclei can be left in excited states following radioactive decay
= The nuclei can “settle” by emitting heavy particle or a gamma ray

= Gamma rays have no mass or charge

- 9

Parent Daughter Gamma ray
(excited nuclear state)

93 N2 relaxation 54,

5 U= 55'Th* 45 a ——— 5*Th 47y
excited
nuclear
state

NATIONAL CANCER INSTITUTE
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Gamma ray versus X-ray

= Both are photons or electromagnetic radiation
= Key difference is how they are produced

o Gamma ray — Emitted as part of settling processing of an excited
nucleus after it undergoes radioactive decay. Highest energy in
the electromagnetic spectrum.

o X-rays — Produced when electrons rearranged within atomic
orbitals or when electrons strike a target.

NATIONAL CANCER INSTITUTE
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How are medical x-rays produced?

Lead casing Glass envelope containing vacuum
L
Qil for heat / / \
conduction |

/ Cathode

.
& E)

Anode

s \
Target /l \ \\ Window \ Focusing cup
X-ray beam Filament

Characteristic
X-ray spectrum

Intensity
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Bremsstrahlung is the
mechanism used to generate
x-rays for medical use.

Electrons are emitted by a hot
filament and drawn to metal
target of opposite charge.

When the electrons interact

or “brake” inside the target,
X-rays are emitted.

31



Table of Nuclides

LNHB Decay Data
http://www.nucleide.o
rg/DDEP WG/DDEP

data.htm

NATIONAL CANCER INSTITUTE

- Long (stable)

10 yr

. Half-life
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Some Facts About Radionuclides
= \While there about 113 chemicals, there about 3,100
radionuclides found in nature

= About 25 radionuclides have half-lives sufficiently long to have
survived since the formation of earth

= About 35 radionuclides have shorter half-lives but are being
continuous produced by the decay of parent nuclides

= About 1,000 radionuclides are artificially produced

o Those with Z > 92 (uranium) are called “transuranics” and are
produced by bombarding lighter atoms with neutrons or alpha
particles

NATIONAL CANCER INSTITUTE
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There are four families of naturally occurring
radionuclides

= Each family begins with a parent radionuclide that decays through a
number of progeny nuclides to a final stable nuclide

= The transition between each successive nuclides occurs by successive
alpha and beta decay

= Two series are particularly important to human exposure:
Uranium-238 (238U) and Thorium-232 (232Th):

= The most important nuclide in terms of public exposure is
Radon-222 (%22 Rn)

NATIONAL CANCER INSTITUTE
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Uranium-238 and Thorium-232 Chains

) NATIONAL CANCEK INDI1IVIE

Radon220
(Thoron)

Polonium
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Radionuclides

* |sotopes react the same
chemically, but have unique
o Half-life
o Type(s) of radiation emitted
o Energy of emitted radiation

= Some radionuclide have very
complex decay patterns

NATIONAL CANCER INSTITUTE

Example Isotopes of lodine

Isotope Half Life
122 3.6 minutes
123 13 2 hours
l-124 4 2 days
125 601 days
l-126 13.0 days
127 Stable

128 25 0 minutes
129 157E7 years
l-130 12 4 hours
l-1.31 5.0 days
132 2.3 hours
133 208 hours
l-134 02 6 minutes
135 6.6 hours

- 136 1.4 minutes
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Decay Scheme of I-131

131

B.\ 0.33 MeV
0
B,\0.47 Mev 6.9%
0.637
MeV
0.326 ®
0.503 M(eV
MeV
0.284 0.18%
MeV
077
5.06%
MeV

0.080

B, 0.25 MeV
16%

0.723 MeV

0 M.V

I s8o0sd
53
£.\061 MeV
0.81 MeV
0.6%
0.364
MeV
11.8d 85.3%
131 0.164 G MeV
Xe
54

) NATIONAL CANCER INSTITUTE
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Q1: Which are examples of charged particles?

= A. Beta particles

B. Gammarays

C. Alpha particles

D. Electrons

E. Neutrinos

NATIONAL CANCER INSTITUTE
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Q1: Which are examples of charged particles?

= A. Beta particles

B. Gammarays

C. Alpha particles

D. Electrons

E. Neutrinos
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Q2: Nuclides having the same number of protons, but
different number of neutrons are called?

A. Isobars

B. Isotopes

= C. Isomeric

D. Isotones

NATIONAL CANCER INSTITUTE
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Q2: Nuclides have the same number of protons, but
different number of neutrons are called?

A. Isobars

B. Isotopes

= C. Isomeric

D. Isotones

NATIONAL CANCER INSTITUTE

41



NNNNNNNNNNNNNNNNNNNNNNN

Interaction of Radiation
with Matter



Radiation Interactions Result in Transfer of Energy

Understanding how radiation interacts with matter leads to
an understanding of its penetrating power and how to
protect against it

paper  plastic steel lead

alpha

- ®
beta —°
beta s

gamma — AAAAS— — QI - nagih,

NATIONAL CANCER INSTITUTE

43



Photon Attenuation

Photon beams interact with the matter through which they
pass and consequently the beam intensity is attenuated.

I — Ioe_ut

Linear attenuation coef ficient

u(p,Z)=t(photoelectric)+oc(Compton)+k(pair)

p,Z
\ ]

|
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Three Types of Photon Interactions with Matter

Likelihood of each interaction depends on the energy of the photon and
atomic number (Z) of the absorber

E ] I]Ill|| | ll]ll”[ 1 Illllll[ R
5 120 a
S = -
E 100 — Photoelec[ric Pair prOdUCtion e
[ . -
S —  effect dominant dominant =
Penetrate '% 80 - ]
__________ o @
-5 == g
s 60— 6% ]
S OF % .
v 40 b— s : —
S . 'E 0 ¢ Compton _scatterlng i
S, zZ dominant
o 20— ]
= = .
% 0 glod oo bd ool 1
0.01 0.05 0.1 0.5 1 5 10 50 MeV
hy
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Photoelectric Absorption

Interaction of photon with tightly bound electron. This photon is
“absorbed” and electron ejected.

M Fluorescent radiation

E,- =E—E,

___ L E, = electron binding
Incoming photon energy

K
5 s
.
5
+ 5
. 5
"
-~
. —
' e

Photoelectron ejected
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Compton Scattering
Interaction of photon with loosely bound electron. The photon scatters
with reduced energy and the electron is ejected.

P gfﬂﬁf_?éfgnﬂehgfﬂ « Wavelength (energy) of the scattered
Fi photon depends of the scattering
e J_’f \n. Scattering angle ang|e:
S | I
A—A = (1— cos@ )
m c
o Ejected €
Compton o
recoil « Remaining energy transferred to the
electron
Compton electron

* Angular distribution predicted by
Klein-Nishina formula
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Pair Production

Incident photon disappears and an electron and positron (positive
electron) are created with total energy equal to energy of the incident

photon.

nucleus

NATIONAL CANCER INSTITUTE

Positron

Electron
—e K-

Energetically allowed only when incident
photon energy exceeds twice rest mass
of the electron or 1.02 MeV

Positron annihilates (combines) with an
electron resulting in two 511 keV
gamma rays
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Charged Particle Interactions

= Electrons released by photon interactions and from beta decay will
be moving in the tissue with some kinetic energy

= Coulomb interactions with electrons from neighboring atoms
gradually slow them down

= Rate of energy loss with distance is proportional to charge of the
particle and electron density of the material

= Electrons cause ionization and excitation as they lose their energy in
the material --- delivering “dose”

NATIONAL CANCER INSTITUTE
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Beta versus Alpha Particle Interactions Beta Particles

lonization Tracks _
e X /_/,____HE A

%

| & 11 r ] ) 1 .
! 1 ¥ 1) r 1 )
i LR ! F. b J \
™ I__#:I 4 . |:L“_ A T ri
L - -u._\_\___-. el o, ]_d_;-'

c-particles ji-particles

Alpha particles are relatively heavy (~7300x
that of electron) and have 2 units of charge,
thus, they have much shorter range because
each Coulomb interaction is 2x greater than
for electrons
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Q3: Which photon interaction dominates at intermediate
energies (10 keV to 5 MeV)?

= A. Photoelectric effect

= B. Compton Scattering

= C. Pair Production

= D. Annihilation

NATIONAL CANCER INSTITUTE
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Q3: Which photon interaction dominates at intermediate
energies (10 keV to 5 MeV)?

= A. Photoelectric effect

= B. Compton Scattering

= C. Pair Production

= D. Annihilation
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Q4: Which type of radiation poses an internal, but not
an external hazard to the body?

= A. Beta particles

B. Gammarays

C. Alpha particles

D. Electrons

E. Neutrinos

NATIONAL CANCER INSTITUTE
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Q4: Which type of radiation poses an internal, but not
an external hazard to the body?

= A. Beta particles

B. Gammarays

C. Alpha particles

D. Electrons

E. Neutrinos
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Dosimetry



Radiation Interactions Result in Deposition of Energy
= Radiation interactions result in release of electron or photons

= The energy is not absorbed in a single event, but rather a cascade of
events until all

1 MeV photons
incident on tissue

m NATIONAL CANCER INSTITUTE Scattered photons Points of ionization 56



Interactions are random on micro-scale, but result in
predictable average ionization

15t 100 photons Next 100 photons

m NATIONAL CANCER INSTITUTE
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Exposure

= Exposure, X, is defined as the absolute value of the total charge of one
sign produced in air within a small volume of air as a result of ionization
of the air

X =dqg/dm

where dq is the charge liberated by the photons in the mass dm of
material

= In Sl unit is the C/kg or sometimes Roentgen (R)
= 1R =258 x 1074 C/kg

NATIONAL CANCER INSTITUTE
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Kerma

= Kerma or “kinetic energy released per unit mass” characterizes a beam
of photons in terms of the energy transferred to any material

K=dE, /dm

where dE, is the sum of the initial kinetic energies of the charged
particles liberated by the photons in the mass dm of material

= Sl unit is the J/kg which has special name gray (Gy)
Kair ~ X(W/e)/(l_g)

NATIONAL CANCER INSTITUTE
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Absorbed Dose

= Radiation damage is approximately proportional to the concentration of
absorbed energy in tissue. For this reason, the basic unit of radiation
dose is the absorbed energy per unit mass of tissue.

= Sl unit is the J/kg which has special name gray (Gy)
= Conventional units are the rad or erg/g (1 Gy = 100 rad)

= Organ absorbed dose, or absorbed dose averaged over an organ, is
the dosimetric quantity most relevant for epidemiology

NATIONAL CANCER INSTITUTE 60



Absorbed Dose ver?us Kerma

Outside of tissue inside of tissue
~——— Range R———
[ 100] . 100] 100 100
I DOOTEC e sovisee e R
+ 100
. ‘.ad G c ) E F N
com\ﬂg \\kéerOX\\ S “;{x::?\_\}r:-exposure
\“—> sseesee absorbed dose
E. \\\\ S \ wrmc
\ I\\
—_— ™\ build up_,'_‘\__ electronic >~
N regiOn\\\\l ~ ethbnum%
\\\ \d;;b—»\ \
\ ¢ AL J

Y Y

Kerma = dose in this region
(where number of secondary
electrons entering equals
those leaving)

Kerma > dose
in this region
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LET captures the
concept that the
rate of transfer
of energy over
same path can
result in different
degree of local
damage

Linear Energy Transfer (LET)

Example of “low” LET radiation damage
for photons and electrons, ~0.25 keV

energy lost per micron
~10 nanometers

LET~0.25 keV
pm

X

Low likelihood of double strand DNA breakage
) NATIONAL CANCER INSTITUTE

Example of “high” LET radiation
damage for alpha particles, ~250 keV
energy lost per micron

D\

LET~250 keV

Higher likelihood of double strand breakage
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Equivalent Dose

= Weighted sum of absorbed
doses for each radiation type

= Sl unit is the Sievert (Sv)

(older unit is the rem, 1 Sv = 100 rem)

= Accounts for differences in
LET for different radiation
types and has some (but
limited value) for radiation
epidemiology

Absorbed dose

Energy deposited in a kilogram of a substance by the radiation

l

Equivalent dose

Absorbed dose weighted for harmful effects of different radiations
(radiation weighting factor wg)

NATIONAL CANCER INSTITUTE

Hp = z WgrDr g
R

Radiation Weighting Factors

Table 2. Recommended radiation weighting factors.

Radiation type

Radiation weighting
factor, wgp

Photons

Electrons® and muons
Protons and charged pions
Alpha particles, fission frag-
ments, heavy ions

Neutrons

I I = =

A continuous function
ol neutron energy
(see Fig. 1 and Eq. 4.3)
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Effective Dose

= Weighted sum of equivalent doses to various organs

= Sl unit is the Sievert (Sv)

(older unit is the rem, 1 Sv = 100 rem)

= Accounts for differences in tissue
sensitivity for radiation protection
(regulatory) purposes and has little
use in epidemiology

Absorbed dose

Energy deposited in a kilogram of a substance by the radiation

l

Equivalent dose

Absorbed dose weighted for harmful effects of different radiations
(radiation weighting factor wg)

l

Equivalent dose weighted for susceptibility to harm of different tissues
(tissue weighting factor w)

NATIONAL CANCER INSTITUTE
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Tissue weighting factors

ORGAN ICRP 26 | ICRP 60 | ICRP 103
Bone marrow (red) 0.12 0.12 0.12
Colon - 0.12 0.12
Lung 0.12 0.12 0.12
Stomach - 0.12 0.12
Breast 0.15 0.05 0.12
Gonads 0.25 0.20 0.08
Bladder - 0.05 0.04
Esophagus - 0.05 0.04
Liver - 0.05 0.04
Thyroid 0.03 0.05 0.04
Bone Surface 0.03 0.01 0.01
1977 1991 2007
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Q5: Which are examples of high LET radiation?

= A. Beta particles

B. Gammarays

C. Alpha particles

D. Neutrinos

E. Neutrons

NATIONAL CANCER INSTITUTE

65



Q5: Which are examples of high LET radiation?

= A. Beta particles

B. Gammarays

C. Alpha particles

D. Neutrinos

E. Neutrons
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Q6: Which dose quantity is used primarily for radiation
protection purposes and has little value for radiation
epidemiology?

= A. Kerma

B. Absorbed Dose

C. Effective Dose

D. Equivalent Dose

NATIONAL CANCER INSTITUTE
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Q6: Which dose quantity is used primarily for radiation
protection purposes and has little value for radiation
epidemiology?

= A. Kerma

B. Absorbed Dose

C. Effective Dose

D. Equivalent Dose

NATIONAL CANCER INSTITUTE
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External versus Internal Dosimetry

External Exposure External Contamination  Internal Contamination

* Inhalation

* Ingestion

e Absorption through
skin or wounds

NATIONAL CANCER INSTITUTE
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Radiation Effects Depend on How Much Dose Received

RADIATION EFFECTS

Measurements in millisieverts (mSv). Exposure is cumulative,
Potentially fatal radiation sickness.
Much higher risk of cancer later in life.
10,000 mSv: Fatal within days.
5,000 mSv: Would kill half of those exposed within one month.
2,000 mSv: Acute radiation sickness.

B No immediate symptoms. Increased
risk of serious illness later in life.

1,000 mSv: 5% higher chance of cancer.

400 mSv: Highest hourly radiation recorded at Fukushima.
Four hour exposure would cause radiation sickness.

100 mSv: Level at which higher risk of cancer is first noticeable

B No symptoms. No detectable increased risk of cancer.
g 20 mSv: Yearly limit for nuclear workers.
4| 10 mSv: Average dose from a full body CT scan
9 mSwv: Yearly dose for airline crews.
3 mSv: Single mammogram
2 mSv: Average yearly background radiation dose in UK
0.1 mSv: Single chest x-ray

EYESHighdosescan

trigger cataracts months later,

4 THYROID Hormone glands vulnerable

to cancer. Radioactive iodine builds up in
thyroid. Children most at risk.

** LUNGS Vulnerable to DNA damage

when radioactive material is breathed in.

- STOMACH vulnerable if radioactive

material is swallowed.

- REPRODUCTIVE ORGANS

High doses can cause sterility.

7T Smmghdos&scause

redness and burning.

- BONE MARROW Produces red

and white blood cells. Radiation can
lead to leukaemia and other immune
system diseases.

This is why dose assessment is important...

NATIONAL CANCER INSTITUTE
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Natural Radiation is Everywhere

Cosmic Rays
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Radiation Has Important Benefits to Mankind

Communications,
aptenna
02

NATIONAL CANCER INSTITUTE
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Where Can | Go For More Information?

= REB Tools and Resources - Useful Links
https://dceq.cancer.gov/about/organization/programs-ebp/reb/tools-useful-links

= Health Physics Society “Ask the Experts”
https://hps.org/publicinformation/ate/

= National Nuclear Data Center Chart of Radionuclides
https://www.nndc.bnl.gov/nudat2/

= LNHB Decay Data
http://www.nucleide.org/DDEP_WG/DDEPdata.htm

= NIST XCOM Photon Cross Sections Tables
https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
= NIST ESTAR Electron Stopping and Range Tables
https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html
= EPA Background Dose Calculator

FOURTH EDITION

https://www.epa.qgov/radiation/calculate-your-radiation-dose

NATIONAL CANCER INSTITUTE
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