Essential radiobiology for radiation epidemiologists

David J. Brenner, Ph.D., D.Sc. Director, Center for Radiological Research, Columbia University Medical Center djb3@columbia.edu

DCEG Radiation Epidemiology and Dosimetry Course 2019

Do epidemiologists need radiobiology?

- The exposure situations that we are interested in these days are generally not those that are amenable to quantitative radiation epidemiology
 - **Extrapolations:**
 - **Dose**

П

- Dose rate
- Radiation quality
- Age / genetics

What is the problem?

About as low dose as epidemiology can go:

Solid cancers in A-bomb survivors exposed to doses from 5-100 mSv

an go: om 5-100 mSv

Low-dose trend tests for solid cancers in A-bomb survivors

Cancer Mortality □ 5 – 100 mGy **P=0.04** □ 5 – 150 mGy **P=0.006 Cancer Incidence** □ 5 – 100 mGy **P=0.08** □ 5 – 150 mGy P=0.01

www.melodi-online.eu/Preston.pdf

The 2012 UK CT Study

Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study

Mark S Pearce, Jane A Salotti, Mark P Little, Kieran McHugh, Choonsik Lee, Kwang Pyo Kim, Nicola L Howe, Cecile M Ronckers, Preetha Rajaraman, Sir Alan W Craft, Louise Parker, Amy Berrington de González

www.thelancet.com Published online June 7, 2012 DOI:10.1016/S0140-6736(12)60815-0

~10 year follow-up of 175,000 patients who received CT scans in the UK, age <22, between 1985 and 2002

Statistically significant linear associations seen between bonemarrow dose and leukemia risk (p=0.01) in the 5-50 mGy range

Why can't we get useful information from epidemiological studies at lower doses?

- We don't have any "fingerprints" to uniquely identify a radiation-induced cancer
 - So epi studies currently involve looking for a radiationassociated increase in cancer rates relative to a background (unirradiated) population
 - ~40% of any study population will get cancer anyway So looking for smaller and smaller excess risks due to lower and lower radiation doses requires bigger and bigger studies

Size of cohort required to detect a significant increase in cancer mortality

From NRC 1995

Three Studies of Mortality in Radiologists

STUDY	Relative Risk	
Matanowski (US)	1.2	Statistically increase
Berrington (UK)	0.68	Statistically decrease
Carpenter (UK)	1.03	No significa

significant

significant

nt change

For the foreseeable future, we will continue to have to either scale or extrapolate the radiation-related cancer risks we need, based on higher dose epidemiological data

- To lower doses
- To different radiation qualities
- To different dose rates
- To populations with different background cancer risks
 - **Different ages**
 - **Different genetic sensitivities**

Estimating the risks associated with still lower doses of ionizing radiation

Can laboratory radiobiology studies help?

Not directly... we have no proven laboratory systems for quantifying radiation-induced cancer risks in man

But indirectly.... they can help us understand how to extrapolate measured radiation-induced cancer risks at high doses to lower doses

Can laboratory radiobiology studies help?

Radiation-induced cancer risks at different doses: The Biophysical argument

Radiation-induced cancer risks at different doses

Childhood cancer after in-utero x-ray exposure

Pelvimetry or obstetric abdominal exam

Mean dose ~6 mGy, 80 kVp x rays **Corresponds to a mean of ~1 photon / cell nucleus**

The Oxford Survey of Childhood Cancers

- ✤ 15,000 case control pairs
- Mean dose ~ 6 mGy **
- Significant increase in childhood cancer after *in-utero* x-ray exposure

Doll and Wakeford 1997

Can in-utero x-ray exposure to ~6 mGy cause cancer?

"It is concluded that radiation doses of the order of 10 mGy received by the fetus in utero produce a causal increase in the risk of childhood cancer".

Doll and Wakeford 1997

The biophysical argument

The biophysical argument makes a number of assumptions that can be questioned

- **Repair mechanisms: Can our very efficient DNA repair mechanisms always** repair small amount of DNA damage?
 - » We have incredibly efficient DNA repair mechanisms, but occasionally they result in misrepair.
- Immunosurveillance: Can immune systems "mop up" any small cluster of premalignant cells?
 - » Not so likely or we'd never get cancer

Assumes the development of tumors from a single damaged cell, independent of surrounding damaged cells

» But cells do talk to each other – the local microenvironent is important

DNA Repair

We have been exposed to ionizing radiation for billions of years, and have developed exceedingly efficient DNA repair mechanisms

But it is known that, along with DNA repair, there is always a small probability of DNA misrepair

Immuno-surveillance and the biophysical argument

If immuno-surveillance or other processes could always "mop up" small numbers of pre-malignant cells, the biophysical argument would not hold

Immuno-surveillance and the biophysical argument

Immuno-surveillance and low-dose risks

If immuno-surveillance or other processes could indeed always "mop up" small numbers of pre-malignant cells, we would never get cancer!

"Sneaking Through" immune surveillance

Kölsch et al. 1973

Weaknesses of the biophysical argument

The argument refers to the development of monoclonal tumors by independently developing cells

We know that cells talk to each other, and we know that the local microenvironment is important

Nature Reviews | Cancer

The significance of inter-cellular communication for radiation-induced cancer

- The biophysical argument refers to the development of monoclonal tumors by autonomous (independently developing) cells
- Are radiation-carcinogenic processes counteracted / amplified by mechanisms at the inter-cellular, tissue or organism level?

Cells in tissues do certainly talk to each other, but what are the implications for low-dose risks?

The most quantified radiation-related inter-cellular response is the **bystander effect**

Where bystander responses have been quantitated, they have shown saturation

What we know of the effect inter-cellular communication suggests that it might modify the dose-response upwards at low doses

...but we don't know a lot, quantitatively

Dose Rate Effects

Shape of the acute dose-response curve at low doses

Splitting the Dose into Fractions

1 hit → linear 2 independent hits → quadratic

Yield = $\alpha D + \beta D^2$

Aberration induction in human lymphocytes 10 cGy/h vs 400 cGy/h

X-ray induction of myeloid leukemia in CBA/H mice

Excess leukemia in A-bomb survivors (Pierce et al 1996)

The inverse dose-rate effect... for densely-ionizing exposures such as radon

For a given dose of densely-ionizing radiation, lowering the dose rate increases the cancer risk

Mammary tumors induced in BALB/c mice by low doses of γ rays and neutrons, HDR and LDR

Relative Biological Effectiveness

RBE =

Dose for given probability of effect by reference radiation

Dose for given probability of effect by radiation of interest

Relevance of RBE

RBE is typically dose dependent

Photons have curved dose-response relations, while those for high-LET radiations are straighter

RBE is dose dependent, with a constant maximal value (RBE_M) at low doses

Neutron RBE vs dose for a variety of endpoints

Rossi 1980

RBE must be due to the initial track structure

Microdosimetry - The Study of Track Structure

- Ionizing radiations deposit energy in a fundamentally different way from that of other mutagens or carcinogens
- The energy imparted, and the subsequent radiation products are not distributed in simple uniform patterns.
- The radiation track is structured, with energy depositions occurring in clusters along the trajectories of charged particles.
- The characterization of energy depositions on micrometer (and smaller) scales is the field of *microdosimetry*

Simulated track of 1 keV electron

Zaider & Brenner 1983

Electron tracks of different energies

Paretzke 1987

Simulated charged-particle tracks

protons

alpha particles

Cosmic-ray iron ion passing through lens of eye

Microdosimetric Unit: Lineal Energy (y)

Energy deposited in a target by a single radiation track, divided by the mean chord length of the target

Microdosimetry: Stochastics of ionizing radiation energy deposition

Simulation of single gamma ray passing through cell nucleus

Simulation of single gamma ray passing through cell nucleus

"Can a single photon really cause significant damage to the genome?"

The distribution of energy depositions in a cell nucleus by a single photon

Maximum energy deposition

Microdosimetric Distributions: Distributions of energy deposition in micron site sizes

Microdosimetric spectra can be calculated or measured

From track structure to RBE_M

Biological response function $RBE_M = \int d(y) r(y) dy$ Microdosimetric spectrum

Different photon energies produce quite different microdosimetric spectra

So, for example, mammographic x rays have an RBE of 2-3, compared to high energy photons

Low dose RBE of ¹³¹I vs. 250 kVp x rays

Based on microdosimetric spectra, RBE_M ~0.6

My time is up!

My Take-Home Message

Interactions between radiation epidemiologists and radiation biologists are going to become increasingly important, as our field focuses more and more on the effects of low radiation doses

NCI 2019

Radiation epidemiology

In fond memory of Elaine Ron

Radiation biology

Pathology allows us to distinguish between a radiation-induced tumor and a sporadic tumor

A. TrueB. False

Pathology allows us to distinguish between a radiation-induced tumor and a sporadic tumor

A. TrueB. False

A-bomb survivor data shows increased radiationinduced cancer risks for doses....

- A. Only above 3 Gy
- B. At doses above 5 to 150 mGy
- C. At doses above 5 to 150 μ Gy

A-bomb survivor data shows increased radiationinduced cancer risks for doses....

- A. Only above 3 Gy
- B. At doses above 5 to 150 mGy
- C. At doses above 5 to 150 μ Gy

Giving the same radiation dose but lowering the dose rate

- A. Typically increases radiation-induced cancer risks
- B. Typically decreases radiation-induced cancer risks
- C. Rarely has an effect on radiation-induced cancer risks
- D. It all depends on the radiation type

Giving the same radiation dose but lowering the dose rate

- A. Typically increases radiation-induced cancer risks
- B. Typically decreases radiation-induced cancer risks
- C. Rarely has an effect on radiation-induced cancer risks
- D. It all depends on the radiation type

Relative Biological Effect (RBE) depends on the radiation dose

A. TrueB. False

Relative Biological Effect (RBE) depends on the radiation dose

A. TrueB. False

cancer.gov/dceg

Produced September 2019

