Preetha Rajaraman, Ph.D. Director, South Asia Programs, NCI Center for Global Health

Cancer Risk from Radiation Exposure: The Role of Genetic Susceptibility

Radiation Epidemiology & Dosimetry Course

National Cancer Institute

www.dceg.cancer.gov/RadEpiCourse

_	Whole Organism	 Assays such as LD_{50/30} 	
riatior	Clinical radiosensitivity	 Consequence of radiotherapy e.g. skin erythema, lung fibrosis 	
of Variation	Susceptibility to Radiation Carcinogenesis	Risk differences in populationsEpidemiology studies	
evels	Tissue radiosensitivity	By specific tissues/organsEpidemiology/clinical studies	
Ĭ	Cellular radiosensitivity	 e.g. cell killing, chromosomal damage, DNA damage 	

Adapted from Human Radiosensitivity: Report of AGIR, 2013

Genetic Susceptibility to Radiation

- Rare syndromes with extreme radiosensitivity
- Ataxia-telangiectasia (AT)
 - Rare childhood neurodegenerative disease
 - Caused by mutations in ATM gene

• Cultured fibroblasts from patients three times as sensitive to radiation (Taylor et al., 1975)

How Does this Affect the General Population?

Types of Genetic Variation

• Chromosomes, genes, RNA, DNA

Single Nucleotide Polymorphisms (SNPs)

- Most common genetic variation
- Each individual has two alleles
 - CC (common referent)
 - CT (heterozygote)
 - TT (homozygous variant)
- Much of the variation appears meaningless
- Some variation increases risk of cancer

Approaches to Study Genetic Variation - 1

- 1. Candidate gene approach
- 2. Pathways of Interest
 - DNA repair
 - Cell-cycle control
 - Apoptosis
 - Immune-related
 - Oxidative Response

Approaches to Study Genetic Variation - 2

Agnostic: GWAS, exome/genome-wide sequencing

- Agnostic no assumptions about underlying biology
- GWAS approach has identified 475+ risk loci in germline DNA for cancers
- Typically 600,000 to 5 million markers across genome

Chromosome

Examples from Radiation

Genetic Susceptibility to Radiation-related Breast Cancer

Candidate Gene Approach: Occupational Radiation

- Nested case-control study within USRT cohort
 - 858 breast cancer, 1083 cancer-free controls
- Radiation dose
 - occupational, personal medical
- Blood samples for DNA

Occupational Radiation, USRT Breast Cancer SNP-radiation interactions:

Pathway (SNPs, genes examined)	Gene	SNP effect	Radiation Interaction	Replication
DNA repair (61 SNPs, 21 genes)	PRKDC BRCA2	✓ ✓	N N	
Apoptosis and proliferation (16 SNPs, 8 genes)	IL1A CASP8	√ √	✓ N	?
Oxidative stress and inflammation (28 SNPs, 16 genes)	PTGS2 IL1B IL4	\checkmark	N N N	
GWAS Identified (38 SNPs, 35 genes)	MRPS30	\checkmark	\checkmark	?

Sigurdson et al, 2007; Rajaraman et al, 2008; Bhatti et al, 2008, 2010; Schonfeld et al, 2010

Summary: Candidate Gene approach

- Focus on genes thought to be involved in radiation toxicity
- A few signals, but not consistent
- Limited knowledge of underlying biology; ability to query genome

DNA Repair	Radiation	Oxidative	Endothelial
Damage	Fibrogenesis	Stress	Cell
ATM,NBN, BRCA1,2 H2AFX, RB1, XRCC1,4,5,6, PRKDC, LIG4, Cyclins, CDKs, CDK inhibitors	TP53, BCL2, CASP3, TNF, ILIA, IL6, TGFB1,2,3 SMADs	SOD1,2,3	Damage FGF2 VEGF

Alternate Approach: Rare Mutations in Breast Cancer Susceptibility Genes

- BRCA1,BRCA2, ATM, RAD51
- Repair of double-strand DNA breaks by homologous recombination
- Inactivation in these genes predisposes to breast (and other) cancers

Figure source: Venkitaraman, NEJM 2003

Diagnostic Radiation (X-rays) and Breast Cancer

Population	Exposure Self Report - misclassification			Citation	
 1,601 BRCA1/2 carriers cohort UK, Canada, Netherlands, France 	Chest x-rays - ever/never; < - no. x-rays by	•	ref never x-ray Higher with younger age, more reported x- rays		Andrieu et al, JCO, 2006
 138 BRCA1 breast cancer; 158 non- mutation breast cancer Poland 	tation breast - e Overlapping bcer		OR=1.7 (0.9, 3.0) OR=1.8 (1.2, 2.9)* ref non-carrier		Gronwald et al, Br Ca Res Treat, 2008
non mutation	founding by dication?	Jyr, → ge	HR = 4.29 (2.1,8.8)* No variation by age at exposure, number x-ray	'S	Lecarpentier et al, Br Ca Res Treat, 2011
 454 BRCA1, 273 BRCA2 carriers <50yrs US, Canada, Aus/NZ 	Chest x-rays, ever/never		OR=1.16 (0.64-2.11) for BRCA1 OR=1.22 (0.62-2.42) for BRCA2		John et al, CEBP, 2013

Diagnostic Radiation (Mammograms) and Breast Cancer

Population	Exposure	Odds Ratio (95% Confidence Interval)	Citation	
1,600 <i>BRCA</i> breast cancer cases, 1,600 non-cancer controls	Age at 1 st Mammography >1yr before dx	OR=1.03 (0.85, 1.25)	Narod et al, Lancet Oncol, 2006	
162 <i>BRCA</i> carriers; 34 cases	No. of mammograms >1yr before enrollment	OR=0.94 (0.88, 1.00)	Goldfrank et al, 2006	
2,346 BRCA 1/2 carriers; 238 cases Lin Por	Any prior hited graphy; first gram age <30	HR=0.79 (0.53, 1.19); HR 0.90 (0.35, 2.34)	Giannakes et al, Breast Ca Res Treat 2014	

- Mammograms more likely to be accurately reported
- Inconsistent results

Risk of Breast Cancer in 1,993 BRCA 1/2 carriers

Therapeutic Radiation and Breast Cancer - 1

- 247 contralateral breast cancer (CBC) cases
- 51 pathogenic germline mutations in BRCA1, BRCA2, CHEK2, ATM in 247 CBC patients
- Radiotherapy-related risk for DDRP germline mutation carriers
 - OR=2.2 (1.03, 4.62) overall
 - OR=2.51 (1.03, 6.10) for CBC five or more years after RT

Broeks et al, Breast Can Res, 2007

Therapeutic Radiation and Breast Cancer - 2

WECARE Nested Case-Control Study

- 708 contralateral breast cancer cases; 1,397 controls
- No increase in risk with radiation dose in carriers

Gene	Radiation	Cases/Cntr Is	OR (95% CI)
BRCA1/2 carrier		96/62	4.5 (3.0 - 6.8)
No mutation	≥ 1 Gy	118/406	1.2 (1.0 - 1.6)
BRCA1/2 Carrier	≥ 1 Gy	21/26	1.0 (0.4 - 2.8)

Bernstein JB et al., EJC, 2013

ATM and risk of contralateral breast cancer

	Radiation Gy	Case/Cntrl	OR (95% CI)	OR* (95% CI)	ERR/Gy
Wild type		271/480			
Any rare <i>ATM</i> variant	Adj	148/264	1.1 (0.8-1.4)		
Missense	Adj	75/129	1.2 (0.8-1.7)		
Missense	0	26/30	0.6 (0.3-1.1)	1.0 (ref)	
	0.01-0.99	21/45	1.7 (0.9-3.1)	2.7 (1.2-6.4)	
	≥ 1.0	21/38	2.0 (1.1-3.9)	3.3 (1.4-8.0)	1.3 (0.1-3.9)
Deleterious Missense	0	14/14	0.6 (0.2-1.3)	1.0 (ref)	
	0.01-0.99	12/17	2.8 (1.2-6.5)	5.3 (1.6-17.3)	
	≥ 1.0	11/15	3.3 (1.4-8.0)	5.8 (1.8-19.0)	2.6 (0.0-10.6)

Bernstein et al, JNCI 2010

GWAS Studies of Radiation-related Cancer

- 1. WECARE study
 - CBC after primary breast cancer (*J Bernstein*)
 - Omni-1Quad
- 2. Childhood Cancer Survivor Study
 - Secondary malignancies after Hodgkin's Lymphoma Survivors (K Onel)
 - All secondary malignancies after eight most common childhood cancers (L Morton)

- 14,359 childhood cancer survivors

 dx 1970-1986, age <21 yrs
 ≥5 yr survival post-dx
- Detailed treatment data
 - RT + Chemo (49%)
 - Radiotherapy (11%)
 - Chemotherapy (22%)
- ~ 45% with biospecimens

Slide courtesy of Lindsay Morton

SMNs in Hodgkin's Lymphoma Survivors

- HL dx before age 18yrs, treated with RT
- Genotyped on Affymetrix 6.0
- Discovery set
 - 100 SMN cases, 89 SMNfree controls
 - rs4946728, PRDM1
- Independent replication
 - 62 SMN, 71 controls (CCSS, MSK, USC)
- Greater number of risk haplotypes associated with lower *PRDM1* mRNA expression

Childhood Cancer Survivor Study GWAS

- 5,739 survivors
 - >1,500 subsequent malignancies in 877 persons
- Illumina Omni5M+E SNP chip (>4 million loci)
- Identify genetic variants associated with:
 - 1) Second cancers after childhood cancer
 - 2) First primary childhood cancer
 - 3) Other late adverse effects after childhood cancer

Parallel Investigations: Germline vs. Tissue

Tumor Sequencing: Molecular Classification

- The Cancer Genome Atlas (2005); International Cancer Genome Consortium (2008)
- Within tumors (>30 types)
 - Gliomablastoma: four distinct subtypes (and specific gene mutations) with different survival and response to treatment
 - Breast cancer: confirmed four main subtypes, with distinct mutations in each. Similarity of basal-like breast cancers and serous ovarian tumors
- Across tumors
 - Common tumor-driving mutations (*BAP1, FBXW7, TP53*) correlated with poor survival across several cancer types

Integrating Germline and Tumor Tissue (example from Glioma)

The Search for "Mutational Signatures"

Alexandrov, Curr Opin Gen Dev, 2014

Sanger Institute, 7,042 tumor tissue samples

22 validated signatures

Challenges: Genetic Susceptibility to Radiation

- Setting
 - High versus low dose radiation
- Outcome
 - Cancer
 - Intermediate outcomes
- Analytical challenges
 - Power
 - Volume of data, methods need to be developed
- Replication

But, exciting times ahead...

- Continue to explore genetic susceptibility
 - Germline + tumor
 - Whole genome sequencing of special populations
 - Integration of platforms: methylation, RNA, proteins
- Interaction with other risk factors
 - Age, sex, smoking
 - BMI, infection, co-morbidities

Questions and Answers

U.S. Department of Health and Human Services National Institutes of Health | National Cancer Institute www.dceg.cancer.gov/RadEpiCourse 1-800-4-CANCER Produced May 2015