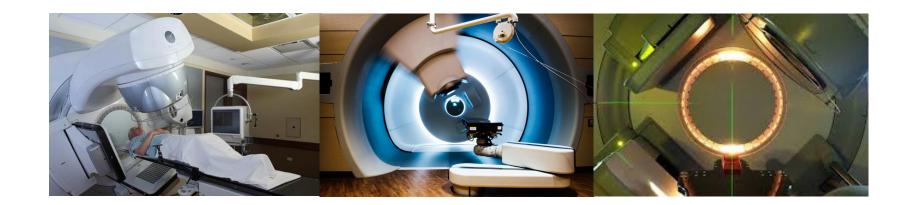
Cancer and Non-cancer Risks from Emerging Radiotherapy Techniques

Dr. Amy Berrington

Branch Chief & Senior Investigator
Radiation Epidemiology Branch
Division of Cancer Epidemiology and Genetics
National Cancer Institute
berringtona@mail.nih.gov

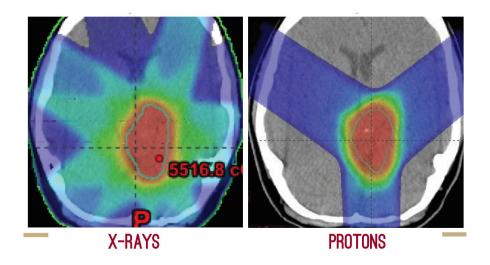
DCEG Radiation Epidemiology and Dosimetry Course 2019

Outline

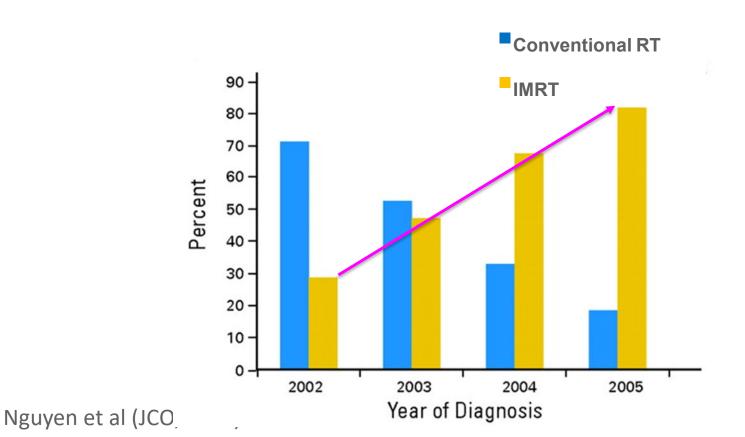

- What are emerging radiotherapy techniques?
- What's the goal and the questions?
- Trends and patterns of use
- Studies of potential cancer and non-cancer risks
 - Indirect modeling
 - Direct patient follow-up

Take Home Message

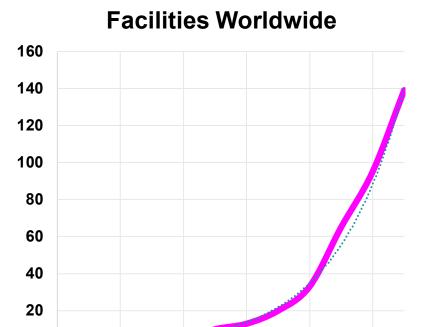
- Will emerging radiotherapy techniques decrease late effects?
 - They should do, but we don't know by how much yet

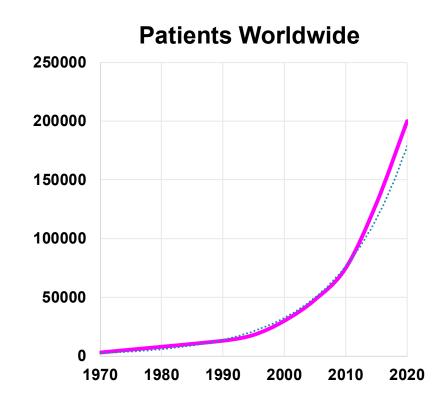

Emerging Radiotherapy Techniques?

IMRT/VMAT, protons, carbon ions....flash RT, microbeam RT


Goal of Emerging Radiotherapy Techniques?

- Reduce high-dose exposure to normal tissues
- Reduce acute toxicities & late effects in/near field
- But...at the expense of increased scatter (low) dose?




Patterns of Use

Rapid Adoption of IMRT: eg Prostate cancer radiotherapy (Medicare USA)

Exponential Expansion in Proton Therapy

Source: PTCOG website

Who is Being Treated with Protons?

International Pediatric Proton Therapy Survey: 2016

- 39 of 54 centers replied (72%) and 20 of 23 US centers
- Estimated 2000-2500 pediatric patients treated in 2016
 - Doubled since 2012 survey
- 24% of patients <age 5 and 50% <age 10</p>
- 33% treated with passive scattering
 - Neutron scatter dose RBE 20?

Journy, Indelicato,...Kleinerman, Berrington (Radiotherapy & Oncology, 2019)

Pediatric RT Patients Treated with Protons in USA: 2016

	% pediatric RT patients
Rhabdomyosarcoma	54%
Medulloblastoma	50%
Ependymoma	68%
Ewing sarcoma	53%
Hodgkin lymphoma	18%
All pediatric cancers	20%

Journy, Indelicato,...Kleinerman, Berrington (Radiotherapy & Oncology, 2019)

USA Adult Proton Surveys

	2012	2016	% 2016 RT patients*
Prostate	2300	?	4%
CNS	600	1200	8%
Head & neck	300	900	3%
Breast	100	700	0.5%
Total	5400	9200	nk

National Association for Proton Therapy (NAPT)

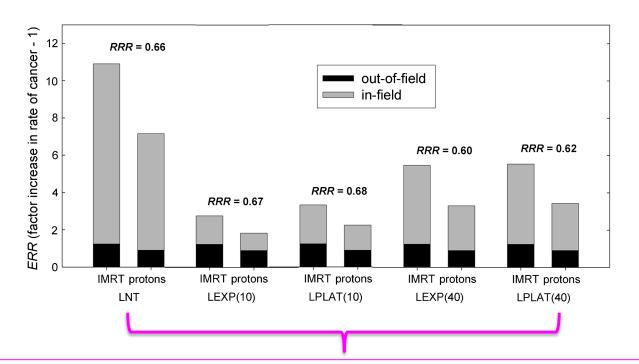
^{*}Back of envelope!

Epidemiological Data

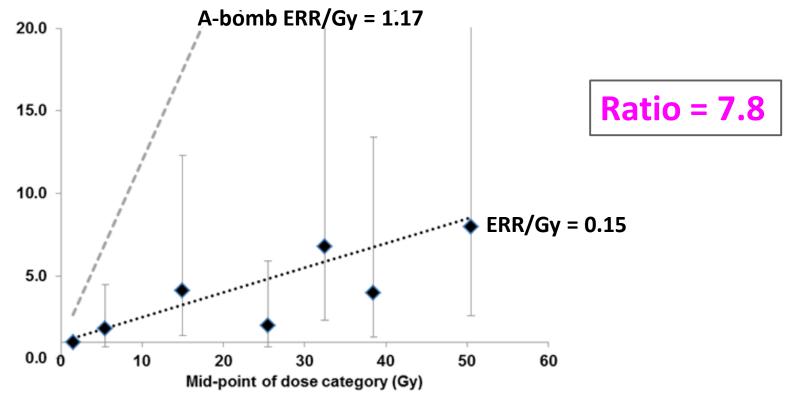
"By definition we cannot observe the late effects of current treatments."

Indirect Approach: Modeling Studies

Treatment planning for photons & protons (small set of patients)



Dose reconstruction (in/out field)


Lifetime 2nd cancer risk projection

Example of Indirect Approach: Risk Projection for Prostate Cancer (n=3) using A-bomb LSS

Dose-response assumptions to extrapolate A-bomb to high dose fractionated exposure

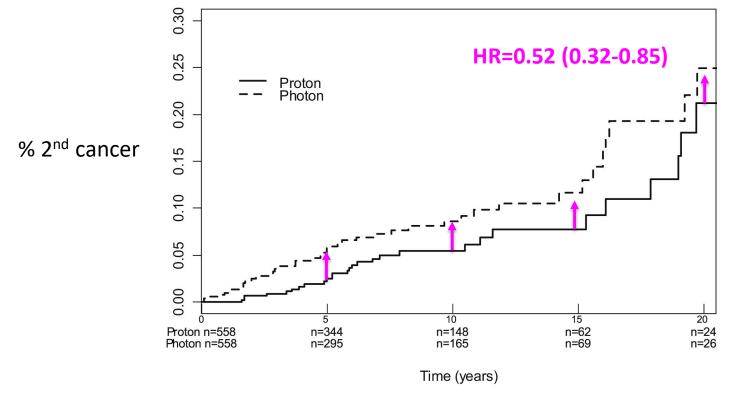
A-bomb vs Radiotherapy Dose-response Comparison Example: Breast Cancer after Hodgkin Lymphoma

Ratio of ERR/Gy for A-bomb vs Radiotherapy

Organ	RT studies	Ratio
Breast	3	5-16
Brain	5	0.2-16
Esophagus	1	8
Lung	2	6-10
Stomach	1	0.5
Thyroid (non-linear)	3	0.8-2

Ratio assumed constant across 2nd cancer sites in modeling studies

Modeling Studies Assumptions

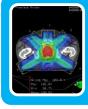

- Dose planning typical for wide-variety of real patients
- Transport of A-bomb risk models to high-dose fractionated RT
- Dose-volume effects
- RBE for neutrons and protons

Study Designs for 2nd Cancers after Radiotherapy

Design	Advantages	Disadvantages
Single institutions	Detailed treatment	Small N Completeness of follow- up?
Cancer registries	Large N Long-term follow-up Highly complete	Limited treatment data Potential confounding
Dose-response case-control studies	Detailed treatment Quantify risk per unit dose	Expensive & time consuming

Single Institution Example: Pediatric proton therapy

MGH Retrospective Study of Proton Patients (n=588) & SEER registries external matched comparison


Registry Example: IMRT for Prostate cancer

IMRT vs 3D-CRT for Prostate Cancer

USA SEER-Medicare

- 1st cancer = prostate
- Age 65-84 years

IMRT vs 3D-CRT

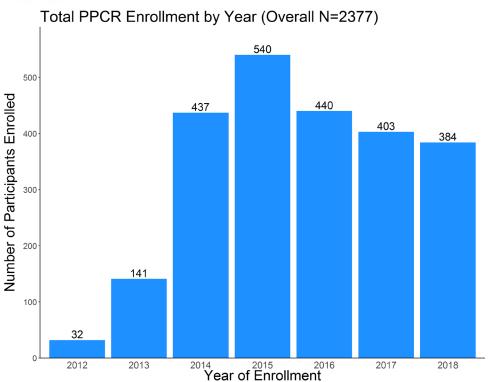
- Claims data 2002-2009
- 39k RT patients

Follow-up to 2011

- 2nd cancers
- Death/end of study

 The <u>Pediatric Proton Consortium Registry</u> is a collaborative effort between 20+ proton centers across the US established to expedite proton outcomes research

13 active sites open to accrual since October 2012:



US Pediatric Proton Therapy Cohort

Pediatric Proton Consortium Registry 1st RT plans cancer (MIM) data **Protons** Other trt **Mortality** data **Photons** Other 2nd adverse cancers effects

Randomized Trial Example: Breast cancer proton therapy

- 1300 Breast cancer patients randomized to protons vs photons
 - 3yr recruitment = 640 women
 - 22 US proton therapy centers
- Primary aims:
 - Reduction in major cardiovascular events
 - Non-inferiority for recurrence

Summary

- Emerging radiotherapy techniques aim to reduce short & long-term toxicities
- Expanding rapidly, but....

- Late effects of emerging technologies still uncertain
 - Risk projections models require assumptions
 - Well-designed comparative studies needed

Quiz questions

Question 1

What's the main aim of emerging radiotherapy techniques?

- a) Reduce high-dose exposures to normal tissues
- b) Reduce low-dose (scatter) exposures to normal tissues

Question 2

Risk modeling studies have established that proton therapy has fewer side-effects than photon therapy?

True or False?

Question 3

What's the main limitation of registry based studies of late-effects?

- a) Small sample size
- b) Limited treatment data
- c) Long-term follow-up

U.S. Department of Health & Human Services National Institutes of Health | National Cancer Institute

cancer.gov/dceg

1-800-4-CANCER

Produced September 2019