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SUMMARY

For many diseases, it is difficult or impossible to establish a definitive diagnosis because a perfect “gold
standard” may not exist or may be too costly to obtain. In this paper, we propose a method to use con-
tinuous test results to estimate prevalence of disease in a given population and to estimate the effects of
factors that may influence prevalence. Motivated by a study of human herpesvirus 8 among children with
sickle-cell anemia in Uganda, where 2 enzyme immunoassays were used to assess infection status, we fit
2-component multivariate mixture models. We model the component densities using parametric densities
that include data transformation as well as flexible transformed models. In addition, we model the mixing
proportion, the probability of a latent variable corresponding to the true unknown infection status, via a
logistic regression to incorporate covariates. This model includes mixtures of multivariate normal den-
sities as a special case and is able to accommodate unusual shapes and skewness in the data. We assess
model performance in simulations and present results from applying various parameterizations of the
model to the Ugandan study.
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1. INTRODUCTION

This article was motivated by the problem of estimating prevalence of infection with human herpesvirus
8 (HHV-8) and quantifying the effects of factors that influence prevalence of HHV-8 infection in several
African populations. HHV-8, also called Kaposi’s sarcoma (KS)–associated herpesvirus, is the gener-
ally accepted infectious cause of KS (Chang and others, 1994). Prevalence of HHV-8 infection and KS
risk shows distinctive geographical variations. They are highest in sub-Saharan Africa, intermediate in
Mediterranean countries, and lowest in the United States and northern Europe, where most KS cases are
AIDS related (Martin, 2003). The modes of HHV-8 transmission are not well understood and appear to
differ in high- and low-HHV-8 incidence regions. In African and Mediterranean countries, HHV-8 infec-
tion occurs during childhood, most likely via nonsexual modes of transmission, but in the United States
and northern Europe, infection is essentially restricted to homosexual men and associated with sexual
exposures (Martin, 2003).

Infection status with HHV-8 can be assessed by several serological assays, but it is impossible to es-
tablish a definitive diagnosis of infection status as a perfect gold standard measure does not exist. Standard
statistical approaches to investigating factors that affect the prevalence of HHV-8 infection, such as con-
tingency table analyses and logistic regression, employ an operational definition of “infected”, namely
that the optical density (OD) reading of a given assay exceeds a prespecified cutoff value. Cutoff values
are commonly determined based on previous experimental results and a visual inspection of histograms
of the OD readings for the given study. To avoid having to use predefined cutoff values for an oper-
ational definition of infected, Pfeiffer and others (2000) fitted a 2-component mixture model to the results
of continuous assay readings to estimate the prevalence of infection with Helicobacter pylori, with the
components corresponding to “infected” and “uninfected” subpopulations. Letting y to denote the OD
readings for immunoglobulin G, the model that treats the true infection status as a latent variable has a
density function given by

g(y) = (1 − p) f0(y) + p f1(y), (1.1)

where f1 is the density function corresponding to the test results for infected and f0 for uninfected
subjects. To assess the x factors that influence infection with H. pylori, Pfeiffer and others modeled
the mixing probability p, the probability of being infected, by a logistic regression, p = p(x; βββ) =
exp(βββ ′x)/{1 + exp(βββ ′x)}.

We will extend model (1.1) to the multivariate setting to address a second problem, that is, how to com-
bine the information from several assays that capture different but not necessarily independent indicators
of HHV-8 infection. This is important because a combination of assays may provide a better diagnostic
tool and yield more accurate estimates of prevalence. Developments in the area of multivariate mixtures
are mostly concentrated on mixtures of multivariate normals because of their computational convenience
(McLachlan and others, 2003). However, the fit of multivariate normal densities to the log-transformed
assay readings in our data was poor, leading to unreasonably large estimates of the key parameter of inter-
est p, the prevalence, in model (1.1). To improve the fit and obtain unbiased estimates of p, we developed
more flexible models to accommodate skewness and heavy tails in the OD readings. First, we incorporate
the parameters of the Box–Cox transformation into the model and estimation. Second, we use densities
from a flexible class introduced by Gallant and Nychka (1987) as the mixture components. This model
includes multivariate normal mixture models as a special case. Covariates are incorporated into the mixing
probability via logistic regression.

In Section 2, we define the bivariate logistic mixture models before assessing the performance of the
models in simulations (Section 3). We apply the models to data from a cross-sectional study of blood-
borne transmission of HHV-8 in Ugandan children afflicted with sickle-cell anemia (Section 4). We com-
pare prevalence estimates from the bivariate mixture model to prevalence estimates obtained by averaging
estimates from univariate mixtures fitted to each assay separately. We also compare logistic estimates
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from the bivariate mixture to those based on predefined cutoff values for the assays. Section 5 contains
concluding remarks.

2. THE DATA AND MODEL FORMULATION

Inference is based on cross-sectional data on disease status and covariates at the time of examination.
The data are (Y j , X j ) for j = 1, . . . , n, where Y j = (Y j1, . . . , Y jl) and Y jk denotes the observed
measurement for the kth assay on the j th subject. The p×1 vector X j contains measured covariates. In our
application, 2 immunoassays were used to determine HHV-8 infection status, and hence Y j = (Y j1, Y j2).
The first component, Y j1, stands for measurements on the K8.1 assay that detects antibodies expressed
during lytic infection, in serum. The second component, Y j2, corresponds to serological measurements on
the orf73 assay that tests for antibodies expressed during latency (Mbulaiteye and others, 2003).

2.1 Mixture model

There is an extensive literature on mixture models (McLachlan and Peel, 2000; Fraley and Raftery, 2002)
that were developed to analyze the data that arise from 2 or more distinct data-generation processes.
One major problem in mixture models concerns estimation of the number of component densities. How-
ever, in our application, we are confident that there are precisely 2 distinct populations that give rise to the
data, an infected and an uninfected population. Thus, we assume that each person is in one of the
2 latent true infection states, which we label as state I j = 1 (infected) and state I j = 0 (uninfected)
with p = pr(I j = 1) for the j th subject. The probability of infection can depend on covariates x j , for ex-
ample, through logistic regression models pr(I j = 1|x j ) = p(x j ; βββ). Other parameterizations of p have
been used in the context of survival data in Pfeiffer and others (2004). Given x j , the probability density
function of Y j is modeled as

g(y j |x j , θ) = f (y j ; ααα0){1 − p(x j ; βββ)} + f (y j ; ααα1)p(x j ; βββ), (2.1)

where f (·; ααα0) is a bivariate parametric density function that corresponds to the OD measurements of the
uninfected subpopulation and f (·; ααα1) is the density of the OD readings for the infected subpopulation.

2.2 Choice of component densities

In previous work (Pfeiffer and others, 2000), we log-transformed the positive OD readings to remove
asymmetry in the measurements and used normal densities for the components in model (2.1). However,
the transformation was determined by visual inspection. We now incorporate the data transformation
indexed by an unknown parameter λλλ into the likelihood. We choose the Box–Cox power transformation

y(λi )
i =

{
(yλi

i − 1)/λi , λi �= 0,

log(yi ), λi = 0,
(2.2)

for the components of y = (y1, y2). In the univariate density setting, coupling the Box–Cox power trans-
formation to likelihood methods for normal mixtures has been used previously (e.g. Gutierrez and others,
1995). We use the same transformation for both components of the mixture for each assay, that is λλλ0 = λλλ1.
Transformation ignores the scale of the observed data, and thus for different values of λλλ, the parameters
of the component densities are not directly comparable (Carroll and Ruppert, 1981). Unlike parameters
of the component densities, the mixing proportion p(x; βββ) in (2.1) has a physical meaning independent of
the transformed scales, namely the percentage of the subpopulation with x that is infected.
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To allow for more flexible shapes compared to normal densities, we choose the component densities in
model (2.1) from a general class introduced by Gallant and Nychka (1987), called the semi-nonparametric
densities. These densities have been studied, for example, by Zhang and Davidian (2001) and are defined
as follows. Let ϕ(y,µµµ,�) be the bivariate normal density with mean vector µµµ, covariance matrix �, and
argument y = (y1, y2). Then, the semi-nonparametric density is

f (y,µµµ,�, a) =
⎛⎝ ∑

0�i+ j�K

ai j yi
1 y j

2

⎞⎠2

ϕ(y,µµµ,�). (2.3)

In (2.3), K = 0 reduces to the bivariate normal density. For K � 1, the polynomial part of the density
has d = (K + 1)(K + 2)/2 distinct terms. Using the standard normal density and z = �−1/2(y − µµµ)
in (2.3), Zhang and Davidian (2001) showed that

∫
f (y)dy = 1 can be guaranteed by imposing the

condition a′ Aa = 1 on the coefficients a = (ai j ) of (2.3), where A is a matrix with (i, j)th element

E(Ui1+ j1
1 )E(Ui2+ j2

2 ) for 2 standard normal variables U1 and U2 and the superscripts correspond to ai

and a j . Because A is a positive definite matrix, there exists a matrix B such that A = B2, and letting
c = Ba, the constraint a′ Aa = 1 reduces to c′c = 1. They represent c in terms of polar coordinates
as c1 = sin(φ1), c2 = cos(φ1) sin(φ2), . . . , cd = cos(φ1) cos(φ2) · · · cos(φd−1), for −π/2 � φ < π/2.
Note that the dimension of φφφ = (φ1, . . . , φd−1) is now d − 1. The constraints are automatically satisfied,
and standard unconstrained optimization techniques can be used to find the maximum likelihood estimates
of the parameters.

Combining (2.2) and (2.3), the semi-nonparametric mixtures (model I) are

g(y|x, θθθ) =
1∑

d=0

J (λλλ)p1−d(x; βββ){1 − p(x; βββ)}d f (y(λλλ),µµµd , �d ,φφφd), (2.4)

where J (λλλ) = yλ1−1
1 yλ2−1

2 is the Jacobian of the transformation y → y(λλλ) and θθθ = (βββ,λλλ,µµµ0, �0,φφφ0,
µµµ1, �1,φφφ1). Following the recommendations by Zhang and Davidian (2001), we limit the model to
K � 2. This model contains the mixture of multivariate normal densities as a special case. Two other
special cases of interest are the situation of model I, K = 0, that results in a model that combines the
Box–Cox transformation with multivariate normal densities, and a model that fits the mixture (2.4) with
K � 1 to untransformed data (model II):

g(y|x, θ) = {1 − p(x; βββ)} f (y,µµµ0, �0,φφφ0) + p(x; βββ) f (y,µµµ1, �1,φφφ1). (2.5)

For a fixed number of mixing components, models (2.4) with increasing K are nested, and thus formal
likelihood-ratio tests can be applied to assess goodness of fit. Testing models of increasing complexity
allows one to choose a parsimonious but well-fitting model within the class. While model (2.5) is also
nested within the more general model (2.4) for the same K , model I, K = 0, and (2.5) are not nested
within each other, and we thus also use the Akaike information criterion (AIC) for model comparison.

2.3 Estimation

The log-likelihood for n individuals based on model (2.4) is given by

L(θθθ) =
n∑

i=1

g(yi |xi , θ) =
n∑

i=1

{log[{1 − p(xi ; βββ)} f (y(λλλ)
i ,µµµ0, �0,φφφ0)

+ p(xi ; βββ) f (y(λλλ)
i ,µµµ1, �1,φφφ1)] + (λ1 − 1)log(yi1) + (λ2 − 1)log(yi2)}.
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We maximized L(θθθ) directly with respect to θθθ using a dual quasi-Newton method (NLPQN in PROC
IML, SAS 8.2), subject to the constraints det(�i ) > 0, i = 0, 1. We also implemented an Expectation
and Maximization (EM) algorithm (supplemental material available at Biostatistics online). In every case
we tested, the EM and quasi-Newton method agreed. To obtain convergence to a global maximum, we
choose 100, 600, and 1000 starting values for the optimization for model I, K = 0, 1, and 2, respectively.
For model II, 200 (K = 1) and 300 (K = 2) starting values were used.

For independent and identically distributed (Y j , X j ), the maximum likelihood estimate θ̂θθ satisfies√
n(̂θθθ − θθθ) −→ Normal(0, Q−1), where θθθ denotes the true parameters and Q = −E[∂2log{g(y|x; θθθ)}/

(∂θi∂θ j )]. The expectation is taken with respect to the joint distribution of (Y, X). We estimate Q by Q̂n =
n−1 ∑n

i=1 Hi , where Hi denotes the negative Hessian of log{g(yi |xi , θθθ)} obtained through numerical
differentiation at θ̂θθ .

Local identifiability of model I (2.4) can be shown to hold at a given point in the inside of the par-
ameter space as the information matrix at any point is nonsingular under the correctly specified model
(Rothenberg, 1971). However, issues relating to global identifiability and stability of the models can still
arise. For K = 2, a single semi-nonparametric density can accommodate heavy tails and skewness as well
as multiple modes. This very flexibility can lead to identifiability problems, for example, when multiple
modes are present in the data. For a specific realization, either component density, the one correspond-
ing to the infected and the one corresponding to the uninfected population, can capture modes located
roughly in the center, which would greatly affect estimates of the mixing proportion. A second related
issue is that a single density alone may provide an excellent fit to the data. To our knowledge, there are
no published references that address what general shapes the semi-nonparametric densities can accom-
modate. We aimed to address identifiability of model (2.4) in several numerical experiments based on
simulated data (supplemental material available at Biostatistics online) and the real data (Section 4).

3. SIMULATIONS

To assess the performance of the various models and numerical issues, we fit the models (2.4) and (2.5)
to data from several simulated scenarios. One hundred data sets with 1000 or 2000 data points were
generated for 3 sets of simulations presented in this section (further simulations are in the supplemental
material available at Biostatistics online). The tables show mean estimates of λλλ and p over the simulations
that converged.

In Table 1, we study the performance for estimating p based on data that arose from a mixture of
bivariate normal distributions with constant mixing proportion, p = 0.25, and to assess the robustness
of the models to small p, p = 0.05. This case corresponds to a linear Box–Cox transformation, that
is, λ1 = λ2 = 1. The means of the normal components were µµµ0 = (10, 10) and µµµ1 = (11, 11) and
the covariance matrices were �0 = [0.25 0.1; 0.1 0.25] and �1 = [0.25 0.05; 0.05 0.5], where � =
[(�)11 (�)12; (�)12 (�)22]. For these 2 settings, we also compared the coverage of a 95% confidence
interval for p based on asymptotic normality of the estimate to likelihood-ratio test-based confidence
intervals.

For the simulations with p = 0.25, the corresponding mean estimates of p (with empirical standard
errors in parenthesis) were 0.25(0.06), 0.25(0.06), and 0.27(0.11) for models I, K = 0, 1, 2, and
0.25(0.07) and 0.10(0.14) for models II, K = 1 and K = 2, respectively. While all models yielded
unbiased estimates of p, the standard error of p for model I, K = 2, was nearly twice as large as the stan-
dard error of the simpler models I, K = 0 and K = 1. The coverage of the confidence intervals was close
to the nominal 95% level for models I, K = 0 and K = 1 and for model II, K = 1, for which p was well
estimated, but it was low for model I, K = 2, and model II, K = 2, ranging from 71% to 75% (Table 1).
This illustrates the need to choose a parsimonious but well-fitting model. Based on the likelihood-ratio
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Table 1. Mean estimates of p and λλλ for models I and II over 100 simulations for N = 1000 observations
simulated from “a mixture of 2 bivariate normal distributions with constant p.” µµµ0 = (10, 10), µµµ1 =
(11, 11), �0 = [0.25 0.1; 0.1 0.25], and �1 = [0.25 0.05; 0.05 0.50]. Empirical standard errors are

given in parenthesis

Model λ1 = 1 λ2 = 1 p = 0.25 Coverage† Coverage‡ Log-likelihood
for p for p

I, K = 0 1.00 (0.03) 1.00 (0.02) 0.25 (0.06) 0.93 0.94 −2010.71 (32.9)
I, K = 1 1.00 (0.02) 1.02 (0.01) 0.25 (0.06) 0.91 0.93 −2009.69 (32.7)
I, K = 2 1.00 (0.02) 1.00 (0.02) 0.27 (0.11) 0.72 0.71 −2006.68 (32.8)
II, K = 1 0.25 (0.07) 0.93 0.90 −2009.50 (32.6)
II, K = 2 0.10 (0.14) 0.71 0.75 −2007.83 (30.9)

Model λ1 = 1 λ2 = 1 p = 0.05 Coverage Coverage Log-likelihood
for p for p

I, K = 0 1.00 (0.02) 1.00 (0.02) 0.06 (0.06) 0.78 0.89 −1865.70 (31.0)
I, K = 1 1.00 (0.02) 1.02 (0.02) 0.06 (0.05) 0.85 0.84 −1864.69 (30.9)
I, K = 2 1.00 (0.02) 1.00 (0.02) 0.08 (0.10) 0.64 0.68 −1860.14 (31.2)
II, K = 1 0.08 (0.10) 0.54 0.50 −1860.14 (31.2)
II, K = 2 0.08 (0.17) NA 0.35 −1862.83 (31.3)

†Coverage of confidence intervals based on the asymptotic normality of p̂.
‡Coverage of likelihood-ratio test-based confidence intervals.

test, in 85/100 simulations, both models I, K = 1 and K = 2, did not fit the data statistically significantly
better than the simpler model I, K = 0. Similarly, model II, K = 2, did not provide a better fit than
model II, K = 1. Not surprisingly, as the data were generated from a mixture of normals, the simplest
model provided unbiased estimates of p with smaller variance and the best fit in most of the runs, as is
also reflected by the mean log-likelihood values for each model (Table 1).

For the simulations with p = 0.05, the estimates of p were 0.06(0.06), 0.06(0.05), and 0.10(0.11)
for models I, K = 0, 1, 2, and 0.08(0.10) and 0.08(0.17) for models II, K = 1 and K = 2, respectively.
The estimates of the parameters of the component densities were nearly unbiased for all models (data
not shown). Based on the likelihood-ratio test, for 83/100 simulations, the more complex models did not
provide a better fit than the simplest model I, K = 0. While the models estimated the small mixing
probabilities without bias, the coverage of all confidence intervals was below the nominal 95% level, with
the likelihood-ratio-based confidence intervals yielding slightly better coverage for models I, K = 0 and
K = 2. We attribute the lower-than-nominal coverage to the fact that p was close to the boundary zero of
the parameter space. The asymptotic normal confidence intervals for model II, K = 2, are not shown as
90/100 runs resulted in singular Hessian matrices.

For the second set of simulations (Table 2), we generated data from the same bivariate normal distri-
butions as Table 1, but with mixing probability p = exp(β0 +β1 X)/{1+ exp(β0 +β1 X)}, with β0 = −2,
β1 = 1, and a Bernoulli covariate X ∈ {0, 1} with probability 0.5. For these parameters, E(p) = 0.19.

For the logistic mixture, all models estimated the parameters βββ of the mixing proportion as close to
(−2.0, 1.0), with similar standard errors for N = 1000, with the exception of model II, K = 2. For
N = 2000 data points, the estimates of βββ were virtually unbiased with comparable standard errors for
all models. Models I, K = 0, K = 1, and K = 2, also resulted in similar parameter estimates of λλλ. The
estimated mean vectors and covariance matrices were also nearly unbiased for all models. The asymptotic
normal confidence intervals had approximately 95% coverage for all models with the exception of model
I, K = 2, where the coverage for β1 was only 75% for N = 1000. For N = 2000, however, all models but
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Table 2. Mean estimates for models I and II over 100 simulations for N = 1000 or N = 5000
observations simulated from “a mixture of 2 bivariate normal distributions with logistic p(X,βββ) =
exp(β0 + β1x)/{1 + exp(β0 + β1x)},” X ∈ {0, 1} with probability 0.5. µµµ0 = (10, 10), µµµ1 = (11, 11),
�0 = [0.25 0.1; 0.1 0.25], and �1 = [0.25 0.05; 0.05 0.50]. Empirical standard errors are given

in parenthesis

Model λ1 = 1 λ2 = 1 β0 = −2.0 β1 = 1.0 Coverage† Log-likelihood
(β0, β1)

N = 1000
I, K = 0 1.02 (0.01) 1.01 (0.09) −1.89 (0.53) 1.27 (1.038) (0.94, 0.96) −1976.37 (32.1)
I, K = 1 1.02 (0.01) 1.03 (0.01) −1.85 (0.69) 1.02 (0.25) (0.97, 0.98) −1975.20 (32.6)
I, K = 2 1.01 (0.09) 1.01 (0.02) −1.81 (0.69) 1.22 (0.95) (0.75, 1.00) −1971.33 (34.9)
II, K = 1 −1.88 (0.52) 1.11 (0.089) (0.92, 0.96) −1975.36 (31.5)
II, K = 2 −1.96 (1.53) 1.23 (1.38) NA −1970.26 (33.8)

N = 2000
I, K = 0 0.99 (0.03) 1.00 (0.003) −1.98 (0.21) 1.00 (0.15) (0.98, 0.95) −3960.01 (42.8)
I, K = 1 1.00 (0.003) 1.00 (0.004) −2.00 (0.21) 0.99 (0.15) (0.99, 0.94) −3959.96 (42.8)
I, K = 2 1.00 (0.003) 1.00 (0.004) −2.00 (0.23) 1.00 (0.15) (0.97, 0.97) −3959.62 (42.9)
I, K = 1 −1.99 (0.27) 1.00 (0.17) (0.97, 0.95) −3959.77 (42.7)
I, K = 2 −1.96 (0.35) 1.01 (0.17) NA −3959.11 (42.9)

†Coverage of confidence intervals based on the asymptotic normality of p̂.

model II, K = 2, had nominal coverage. For model II, K = 2, again nearly all runs resulted in singular
Hessian matrices. Based on likelihood-ratio test, model I, K = 0, was preferable to the more complex
models in nearly all simulations.

The last set of simulations (Table 3) assessed the performance of the models for highly skewed data
with constant mixing proportions p = 0.5 and p = 0.05. The components y01 and y02 of the first subpop-
ulation were independent χ2

1 variables, and the components of the second subpopulation y11 and y12 were
independent χ2

3 variables. For the data simulated with p = 0.5, the mean estimated mixing proportions
were 0.51(0.05), 0.51(0.05), and 0.48(0.12) for models I with K = 0, K = 1, and K = 2, respectively,
with the standard error for K = 2 being more than twice as large as for the simpler models. The estimates
of p for model II, K = 2, and model II, K = 1, yielded a lower average estimate of p of 0.44(0.06).
Models I, K = 0 and K = 1, resulted in very similar parameter estimates, and the estimates of the poly-
nomial coefficients of models I, K = 1 and K = 2, did not provide evidence for a statistically significant
polynomial component. The likelihood-ratio-based confidence intervals for models I, K = 0 and K = 1,
had 94% coverage, while it was only 74% for model I, K = 2. For both models II, the coverage was
much lower, 39% and 38% for K = 1 and K = 2, respectively. Again, these models did not fit the data
as well as model I, K = 0, which has fewer parameters but allows for a Box–Cox transformation. All
models correctly estimated the correlation terms in the mixing densities close to zero. All runs converged
for models I, K = 0 and K = 1, and 97/100 runs converged for K = 2. For model II, 91/100 simulations
converged for K = 1 and 89/100 for K = 2. The simulations with p = 0.05 illustrate well that a lack of
fit of the mixing components can lead to severe bias in the estimates of p. The mean estimates of p were
0.04(0.05), 0.05(0.07), and 0.08(0.09) for models I with K = 0, K = 1, and K = 2, respectively, and,
highly biased, 0.60(0.05) and 0.59(0.06) for models II, K = 1 and K = 2, respectively. The coverage
of likelihood-ratio-based confidence intervals, however, was below the 95% nominal level for all models.
For model I, 99/100 runs converged for K = 0, 95/100 for K = 1, and 94/100 for K = 2. For model II,
all runs converged for K = 1 and 99/100 for K = 2. As indicated by the log-likelihood-ratio test, model



144 R. M. PFEIFFER AND OTHERS

Table 3. Mean estimates of p and λλλ for models I and II over 100 simulations for N = 1000 observations
simulated from “a mixture of 2 chi-square distributions, constant p”: y01 ∼ χ2

1 , y02 ∼ χ2
1 , y11 ∼ χ2

3 ,
and y12 ∼ χ2

3 . Empirical standard errors are given in parenthesis

Model λ1 λ2 p = 0.5 Coverage† Log-likelihood
for p

I, K = 0 0.20 (0.02) 0.20 (0.02) 0.51 (0.05) 0.94 −3152.49 (66.9)
I, K = 1 0.20 (0.02) 0.20 (0.02) 0.51 (0.05) 0.94 −3152.47 (66.9)
I, K = 2 0.19 (0.03) 0.18 (0.03) 0.48 (0.12) 0.74 −3138.60 (67.8)
II, K = 1 0.44 (0.06) 0.39 −3893.36 (56.6)
II, K = 2 0.44 (0.06) 0.38 −3862.35 (69.3)

Model λ1 λ2 p = 0.05 Coverage† Log-likelihood
for p

I, K = 0 0.31 (0.03) 0.30 (0.03) 0.04 (0.05) 0.77 −4061.50 (39.3)
I, K = 1 0.30 (0.03) 0.30 (0.03) 0.05 (0.07) 0.67 −4061.64 (40.3)
I, K = 2 0.28 (0.06) 0.27 (0.06) 0.08 (0.09) 0.66 −4054.07 (40.7)
II, K = 1 0.60 (0.05) 0.00 −4327.55 (40.5)
II, K = 2 0.59 (0.06) 0.00 −4253.37 (40.6)

†Coverage for likelihood-ratio-based confidence intervals.

I, K = 2, fits the data better than model I, K = 0 or K = 1, for p = 0.5, but not for p = 0.05. For all
values of K , however, model I fits the data significantly better than model II.

4. APPLICATION TO THE UGANDAN HHV-8 STUDY

We applied the bivariate mixture models (2.4) and (2.5) to data collected from 599 children aged
0–16 years, at Mulago Hospital, Kampala, from November 2001 to April 2002. Interviewers obtained
a blood sample from each child for the K8.1 and the orf73 immunoassays. The main predictors of in-
fection status were age (younger than 5 years, 5 � age < 10, older than 10 years), transfusion status
(ever/never transfused), and water source (tap water versus surface water). Details about the study and
related HHV-8 epidemiology are in Mbulaiteye and others (2003).

4.1 Analysis using mixture models with constant p

Table 4 shows the estimates of λλλ, p, and the value of the log-likelihood for models I and II with constant
mixing probability p and for single semi-nonparametric densities. Model I, K = 2, had a significantly
better fit than all other models based on the likelihood-ratio test and also had the largest AIC value. Model
I, K = 1, also fit the data significantly better than model I, K = 0, and both models II, based on the
likelihood-ratio test. Histograms of the K8.1 and orf73 OD readings on the λ scales for model I and on
the original scale for model II, with the corresponding fits from models I and II for K = 1 and K = 2
superimposed are presented in Figure 1, respectively. Model parameter estimates are presented in the
supplemental material available at Biostatistics online. The prevalence estimates based on model I were
p = 0.19(0.03) for K = 1 and p = 0.18(0.02) for K = 2, while they were much larger for the models
with poor fit, p = 0.49(0.06) for model I, K = 0, and p = 0.44(0.03) and p = 0.43(0.06) for model
II with K = 1 and K = 2. Models with poorer fit exhibited higher collinearity in parameter estimates.
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Table 4. “Uganda HHV-8 study”: Results for mixture models I and II with constant p for bivariate and
univariate data, and single Semi-nonparametric density fit to bivariate data; model-based standard errors

given in parenthesis

Model λ1 λ2 p Log-likelihood AIC

Bivariate models
I, K = 0 0.43 (0.07) 0.35 (0.05) 0.49 (0.06) −172.48 −370.96
I, K = 1 0.24 (0.03) 0.24 (0.04) 0.19 (0.03) −160.13 −354.26
I, K = 2 0.27 (0.05) 0.10 (0.05) 0.18 (0.02) −145.98 −337.96
II, K = 1 0.44 (0.03) −258.25 −546.50
II, K = 2 0.43 (0.03) −210.26 −462.52
Single density, K = 0 0.07 (0.16) 0.03 (0.03) −232.39 −478.78
Single density, K = 1 0.09 (0.16) 0.03 (0.03) −224.28 −466.56
Single density, K = 2 0.32 (0.04) 0.20 (0.05) −181.10 −386.20

Univariate models for K8.1 assay
I, K = 0 0.11 (0.05) 0.17 (0.03) −302.36 −308.36
I, K = 1 0.04 (0.04) 0.16 (0.02) −293.30 −301.30
I, K = 2 0.41 (0.08) 0.16 (0.03) −288.59 −298.59
II, K = 1 0.39 (0.03) −329.14 −336.14
II, K = 2 0.42 (0.03) −293.26 −302.26

Univariate models for orf73 assay
I, K = 0 0.28 (0.11) 0.35 (0.11) −47.29 −53.29
I, K = 1 0.08 (0.06) 0.18 (0.04) −43.01 −51.01
I, K = 2 0.24 (0.10) 0.35 (0.09) −38.78 −48.78
II, K = 1 0.41 (0.03) −81.72 −88.72
II, K = 2 0.42 (0.03) −50.78 −59.78

The correlation of p̂ with the other model parameters was largest for model I, K = 0; for example, the
correlations of p̂ with µ̂00 and µ̂10 were 0.71 and 0.85, respectively, which made the estimates of p very
sensitive to the fit of the mixing components. For model I, K = 2, however, the largest correlation was
0.35 between p̂ and (�̂1)11. Estimates of p were insensitive to the choice of starting values.

To study the stability and possible identifiability problems of the estimates of p in the Uganda data
set, we sampled 100 data sets with replacement and fit models I, K = 1 and K = 2 with 600 and 1000
starting values, respectively. The mean estimates of p over 100 bootstrap repetitions (bootstrap standard
deviation in parenthesis) were 0.19(0.05) and 0.18(0.03) for models I, K = 1 and K = 2, respectively.
The standard deviations estimated from the bootstrap were very close to the model-based estimates of
the standard deviations (Table 4), indicating that the information matrix was well defined and asymptotic
theory could be used for inference. Histogram plots of the bootstrap p̂ (Figure 2) showed a unimodal
distribution very narrowly centered around 0.2 for models I, K = 1 and K = 2.

For all choices of K , and even for K = 0, the 2-component mixture fits the Uganda data better than a
single semi-nonparametric density as assessed by the AIC (Table 4).

We compared the prevalence estimate from the bivariate model to estimates obtained by averaging
prevalence estimates from univariate mixture models that were fitted separately to the K8.1 and orf73
assays (Table 4). To account for the dependence between the univariate estimates, we computed the stand-
ard errors of the averaged estimates using a bootstrap procedure, assuming that the weights were known
and fixed for the inverse variance–weighted estimate.



146 R. M. PFEIFFER AND OTHERS

Fig. 1. Histograms and fits from bivariate mixture densities on λ scale for Uganda HHV-8 study.

Based on the likelihood-ratio test, model I, K = 2, had a significantly better fit than all other
models and also the largest AIC value. The simple average of the prevalence estimates from the best
fitting models was 0.26(0.08), while the inverse variance–weighted estimate was 0.18(0.06). The
inverse variance–weighted estimate thus agreed with the prevalence estimate from the bivariate model.
However, the bootstrap standard error of this estimate was 3 times larger than the estimated standard
error of p from the bivariate mixture model and twice as large as the bootstrap estimate of the standard
error of p from that model. The bivariate mixture model thus provided a much more precise estimate of
prevalence.
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Fig. 2. Histogram of bootstrap estimates of p for Uganda HHV-8 data.

Table 5. Uganda HHV-8 Study: Estimation of parameters in “logistic p” and logistic regression based
on fixed cutoff values for the assays; model-based standard errors given in parentheses

Parameter Bivariate mixture model Standard logistic regression
Infected defined based on

fixed cutoff values for
Model I Model II

K = 0 K = 1 K = 2 K = 1 K = 2 K8.1 orf73 Combined

Intercept −1.65 −1.73 −2.05 −1.65 −1.68 0.01 −0.35 0.15
(0.28) (0.29) (0.39) (0.25) (0.24) (0.23) (0.23) (0.21)

5 � age < 10 1.56 1.55 1.72 1.32 1.35 0.94 1.49 1.17
(0.28) (0.28) (0.33) (0.24) (0.24) (0.30) (0.32) (0.26)

Age � 10 1.63 1.63 1.94 1.39 1.40 1.75 1.36 1.46
(0.29) (0.29) (0.35) (0.25) (0.25) (0.30) (0.32) (0.27)

Ever transfused 0.31 0.30 0.50 0.32 0.32 0.31 0.30 0.21
(0.23) (0.22) (0.25) (0.19) (0.19) (0.22) (0.22) (0.20)

Surface water 0.80 0.79 1.09 0.63 0.69 0.55 0.93 0.81
(0.24) (0.23) (0.27) (0.20) (0.20) (0.22) (0.22) (0.20)

Log-likelihood −142.61 −136.67 −117.66 −231.32 −181.46 −271.00 −267.49 −310.21
AIC −319.22 −315.34 −289.32 −500.64 −412.92 −372.92 −552.00 −544.98

4.2 Analysis with logistic mixture models

We then modeled the mixing component p by a logistic function that included age in 2 categories, trans-
fusion status, and water source as covariates. We could incorporate covariates by regressing the means
of the component densities on covariates, but in our problem, the covariates considered were thought to
influence the chance of being infected, but not the antibody distributions conditional on infection status.
To verify this, we first fit the constant p models to data stratified on the categories of age, transfusion
status, and water source. The stratified component density estimates were very similar, and thus the more
general model was not needed in our data.

The estimates for the parameters in the logistic component and the values of the likelihood and AIC are
given in Table 5. Again, the fit of model I, K = 2, was significantly better than the fits of the other models
based on the likelihood-ratio test. Model I, K = 2, also had the largest AIC value. The parameters of the
mixing components for model I, K = 0, and model II did not change much compared to the model with
constant p. For models I, K = 1 and K = 2, the parameters of the mixing components, however, were
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Fig. 3. Posterior probabilities of infection for the Uganda children.

more affected. For example, for K = 1, λλλ changed from (0.24, 0.24) for constant p to λλλ = (0.41, 0.33) for
the logistic mixture. The parameters of the logistic mixing probability were similar: age and surface water
source were associated with significantly elevated risk of infection for all models and transfusion status
was not significantly associated. Model I, K = 2, resulted in slightly larger estimates for the log-odds
parameters than the other models. Model I, K = 2, also provided the best univariate fits when applied
separately to the K8.1 and orf73 OD readings (data not shown).

The mixture model allows one to calculate the posterior probability of infection, I j = 1, given x j and
y j . Indeed, from (2.4), we get

pr(I j = 1|y j , x j ) = p(x; βββ) f (y(λλλ),µµµ1, �1,φφφ1)

{1 − p(x; βββ)} f (y(λλλ),µµµ0, �0,φφφ0) + p(x; βββ) f (y(λλλ),µµµ1, �1,φφφ1)
.

Figure 3 shows histograms of the posterior probabilities of infection computed based on model I, K = 2,
fit to the bivariate data as well as to the marginal K8.1 and orf73 data. To minimize the overall misclas-
sification probability based on the mixture model when discriminating infected from uninfected subjects,
one sets I j = 1 if pr(I j = 1|y j , x j ) � 0.5 and I j = 0 otherwise. For all models, fewer than 5% of the
estimates were between 0.3 and 0.7.

4.3 Analysis with infection status assumed to be known

We compared the estimates from the mixing probability of the multivariate mixture models with several
marginal logistic models, based on operational definitions of infected. The coefficients in this model have
a different interpretation than the parameters in the logistic part of the mixture, however. They are based on
the observable events Ti = I (yi � ci ), i = 1, 2, whereas the mixture models estimate the probability of
the latent, unobservable infection state. To define infected, we applied the cutoff points used by Mbulaiteye
and others (2003), with OD for the K8.1 �0.90 corresponding to uninfected, OD >1.20 to infected, and,
somewhat arbitrarily, OD reading in the range 0.90–1.20 labeled as “indeterminate”. The prevalence of
infection (excluding 38 indeterminate children) was 117/561= 20.9%. The operational definition for the
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orf73 assay was that a child was HHV-8 negative for OD readings �0.5, indeterminate for OD readings
in the range 0.5–0.7, and infected if OD �0.7. Fifty children were indeterminate and 127 (23.1%) of the
remaining 549 were classified as infected, based on their orf73 OD readings. These estimated prevalences
agree well with the estimates of p̂ for models I (K = 1, 2) in Table 4. Often results from both assays
are combined by assuming that a child that is positive on either one of the 2 assays is infected, T =
max(T1, T2). After excluding 3 children who were indeterminate on both assays, the prevalence based on
this criterion was 23%. The corresponding prevalence estimate based on the mixture model is the posterior
probability of infection given that the assay readings were not in the indeterminate region, pr(I = 1|y1 /∈
[0.9, 1.2], y2 /∈ [0.5, 0.7]), estimated to be 0.19 and 0.18 for models I, K = 1 and K = 2, respectively.
The estimates for the models with poor fit were again much higher, 0.48 for model I, K = 0, and 0.43
and 0.42 for models II, K = 1 and K = 2. As only 3 children had OD readings in the joint indeterminate
region, these estimates differed only slightly from p̂ in Table 4.

Estimates of log-odds ratios based on the various definitions for infected (Table 5) are close to those
obtained from the mixture models, leading us to conclude that the operational definitions of infected
capture the true latent infection status well.

4.4 Estimation and comparison of cutoff points

The multivariate mixture can also be used to find the cutoff values that in some sense best separate the
uninfected from the infected population. To determine optimal cutoff points for the assays, we minimize
the probability of misclassification under the mixture model as a function of cut-points (c1, c2),

p
∫ ∞

c1

∫ ∞

c2

f (y; α0)dy + (1 − p)

∫ c1

−∞

∫ c2

−∞
f (y; α1)dy, (4.1)

where the αi , i = 0, 1, and p are replaced by their estimates. Reported on the original OD scale, mini-
mizing (4.1) for model I, K = 2, yields c1 = 0.79 and c2 = 0.79 with misclassification probability 0.02.
While this would not change the number of children that falls above the cutoff value for K8.1 compared to
the cutoff values which the investigators used previously, 39 more children would be classified as infected
based on the orf73 if c2 = 0.79 was used.

5. DISCUSSION

In this paper, we present a new class of multivariate mixture models that combines the Box–Cox transfor-
mation with a class of semiparametric densities for the mixing components. This class contains mixtures
of normals as a special case and, for a fixed number of mixing components, allows for formal testing of
models of increasing complexity. Covariates can be incorporated into the mixing probabilities by logistic
regression or other generalized linear models. The motivation for our work was the desire to combine 2
different assays to assess infection status with HHV-8 and factors that influence prevalence. Although we
are fairly certain that there are 2 distinct subpopulations in the data, one infected and the other uninfected,
the assay measurements are not always well separated and the data have heavy tails. The main interest
in our applications was the estimation of the parameters relating to the mixing proportion or prevalence,
while the parameters of the mixing components were nuisance parameters in the model. An attractive
feature of our model is that it can accommodate skewness and multimodality in the data, but this very
flexibility can lead to identifiability problems. To study the identifiability aspects of the models, we ex-
amined the behavior and stability of estimates of p in simulations (supplemental material available at
Biostatistics online), using a bootstrap procedure for the Uganda data. In summary, to avoid identifiability
problems in using our proposed class of models, it is necessary to try numerous starting values for maxi-
mization to ensure convergence to a global maximum and, most importantly, to avoid overfitting by testing
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nested models of increasing complexity as recommended for a single semi-nonparametric density (Liu and
Zhang, 1998).

Choosing well-fitting but parsimonious models is also important as the use of more flexible models for
the component densities, while reducing bias, has the potential to increase the variance of key parameters,
such as prevalence. Such a tendency was seen in simulations (Tables 1 and 2) where all the models, even
the simpler ones, fit the data well, but the simpler models yielded more precise estimates of prevalence.
However, in data from the Uganda study, we found that more complex but better fitting models yielded
more precise estimates of prevalence than a simpler, poorly fitting models (Table 4).

Application of the models to the Uganda data highlights the importance of including both the Box–
Cox transformations and the polynomial components in the densities to provide adequate fit to the data
and thus stable estimates of prevalence. Estimates of HHV-8 prevalence were insensitive to the choice of
starting values for p, and bootstrap replications yielded a tight distribution of p̂ centered about the original
estimate. Bootstrap standard errors were close to model-based standard errors, indicating that p was well
identified in our data and that inference based on asymptotic theory was valid.

We compared prevalence estimates p from the bivariate mixture model to estimates obtained by
averaging prevalence estimates from univariate mixtures fit to each assay separately. While the inverse
variance–weighted prevalence estimate was identical to p from the bivariate mixture model, the estimated
standard error of the inverse variance–weighted estimate (assuming fixed and known weights) was 3 times
larger than the model-based standard error of p from the bivariate mixture model and twice as large as
its bootstrap standard error. Computing prevalence by averaging estimates from the marginal models thus
resulted in an estimated loss of efficiency of at least 75% for this data set.

Our work relates to other approaches for evaluating diagnostic tests without gold standards. Rindskopf
and Rindskopf (1986) among others fitted 2-component multivariate mixture models with the components
corresponding to “diseased” and “non-diseased” subjects. However, the results of the k tests applied to the
same person were assumed to be independent conditional on disease status. We relax the independence
assumption by allowing joint densities for each component. In our application, 2 immunoassays that
detect 2 different types of antibodies were used to assess infection status. In case of infection, both types
of antibodies can be present, and thus independence likely does not hold.

The mixture model approach has several potential advantages compared to standard epidemiologic
approaches to define infection status. We need not rely on an external definition of a cutoff value to
classify each observation. The continuous nature of the data is used to its full extent, and we obtain a
complete description of the distribution of the OD values (y1, y2) in the presence of covariates X . This
enables us to calculate pr(infected|y1, y2, X), the probability of being truly infected given the OD readings
and covariates X .
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