Amy Berrington de González, D.Phil.
Chief, Radiation Epidemiology Branch
and Senior Investigator

Diagnostic Imaging, Screening and Cancer Risk

Radiation Epidemiology & Dosimetry Course

National Cancer Institute www.dceg.cancer.gov/RadEpiCourse
Dramatic Increase in Medical Exposures in the U.S.

1980
- CT scans: 3 million
- Nuclear medicine: 6 million

2006
- CT scans: 70 million
- Nuclear medicine: 18 million

NCRP report 160 (2009)
International Trends in Diagnostic Imaging

Mettler et al (Radiology 2009)
Recent Trends in CT use in the USA

Number of CT scans (millions) in USA

IMV 2014
Recent Decline of 10%/year in Nuclear Medicine
Radiation Exposure in the U.S. (updated)

1980

- CT scans: 3 million
- Nuclear medicine: 6 million

2015?

- CT scans: 80 million (+10)
- Nuclear medicine: 12 million (-6)

Exposure levels:
- Natural: 3mSv
- Medical: 3mSv
- Other: <0.1mSv
Diagnostic Imaging - Effective & Organ Doses

<table>
<thead>
<tr>
<th>Procedure</th>
<th>X-ray</th>
<th>CT scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skull</td>
<td>0.1 mSv</td>
<td>2 mSv</td>
</tr>
<tr>
<td>Chest</td>
<td>0.1 mSv</td>
<td>7 mSv</td>
</tr>
<tr>
<td>Abdomen</td>
<td>0.7 mSv</td>
<td>8 mSv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CT scan</th>
<th>Brain</th>
<th>Lung</th>
<th>Stomach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skull</td>
<td>40 mGy</td>
<td>0 mGy</td>
<td>0 mGy</td>
</tr>
<tr>
<td>Chest</td>
<td>0 mGy</td>
<td>20 mGy</td>
<td>6 mGy</td>
</tr>
<tr>
<td>Abdomen</td>
<td>0 mGy</td>
<td>3 mGy</td>
<td>20 mGy</td>
</tr>
</tbody>
</table>

Mettler et al (Radiology 2009)
Why Study Diagnostic Radiation & Cancer Risk?

• Public health concern & Clinical decision making
• Radiation carcinogenesis
 • Low-dose fractionated exposures
 • Medical records – exposure history
 • Any organ & exposure age
Methodological Issues

• Case-control vs cohort
• Sample size
• Exposure assessment
 – Medical records
 – Self-reported
 – Dose reconstruction
 – Organ doses
• Timing of exposure
 – Age at exposure
 – Latency period
• Confounding by indication (underlying conditions)
Pediatric CT Scans & Cancer Risk

- Higher doses & risks for children
 - Patient size
 - Adult settings in past (<2000)
 - Head CT 60 mGy brain
 - Chest CT 30 mGy breast

Retrospective, record linkage studies of 2+ million children
- NCI-UK Cohort – 200k
- European Study EPI-CT – 1 million
- Canada (n=400k), Israel (n=70k) and Australia (n=680k)
NCI-UK Pediatric CT scan Cohort

- 1990-2002 CT scans aged 0-21 yrs
- Link to cancer registrations, vital status
- Organ dose estimates – generic dosimetry
- Leukemia & brain tumors dose-response

Pearce et al (Lancet 2012); Kim et al (Radiat Prot Dosimetry 2012)
Leukemia/MDS and Radiation Dose to Red Bone Marrow

Pearce, Salotti, Little, McHugh, Lee ..., Berrington de Gonzalez (Lancet 2012)

p-trend=0.010
Brain Tumors and Radiation Dose to Brain

Pearce, Salotti, Little, McHugh, Lee …, Berrington de Gonzalez (Lancet 2012)

p-trend<0.0001
Leukemia - Confounding by Indication?

Underlying condition related to cancer & the condition related to CT scan frequency

Reproduced from DOWN'S SYNDROME ASSOCIATION Website (www.downs-syndrome.org.uk)
Reverse Causation – Brain Tumors?

"I wish they didn’t turn on that seatbelt sign so much! Every time they do, it gets bumpy."
Impact of Excluding Underlying Conditions

<table>
<thead>
<tr>
<th>ERR/mGy</th>
<th>UK CT Study</th>
<th>UK CT Study (after exclusions)</th>
<th>Life Span Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukemia</td>
<td>0.036 (0.005-0.12)</td>
<td>0.031 (0.003, 0.109)</td>
<td>0.045 (0.016-0.188)</td>
</tr>
<tr>
<td></td>
<td>(n=74)</td>
<td>(n=70)</td>
<td></td>
</tr>
<tr>
<td>Brain tumors</td>
<td>0.023 (0.010-0.049)</td>
<td>0.012 (0.004, 0.031)</td>
<td>0.006 (0.0001-0.063)</td>
</tr>
<tr>
<td></td>
<td>(n=135)</td>
<td>(n=112)</td>
<td></td>
</tr>
</tbody>
</table>

Berrington de Gonzalez et al
Collection of CT Films to Improve Dosimetry/Uncertainty

Downward Trend in mAs for Head CT

0-4 yrs 195
5-9 yrs 240
10-14 yrs 280
Ongoing Pediatric CT Scans Cohorts

Australian Cohort
- 680k exposed children, 11m unexposed
- RR=1.16 per CT (1.13-1.19)
- Excesses of leukemia, MDS, brain, thyroid, melanoma, lymphomas... but only 1 year exclusion period
- Dosimetry ongoing

French Cohort
- 67k exposed children (2000-2010)
- Mean follow-up 4 years (n=27 brain, 25 leukemia, 21 lymphomas)
- 32% cases had cancer pre-disposing syndromes

German Cohort
- 45k exposed children (1980-2010)
- 46 childhood cancers
- Exclusion 2 years but 7 cases excluded due to evidence of cancer on CT

EPI-CT 1+million children: results due 2017

In Utero Exposures & Childhood Cancer

- OSCC 15,300 case-control pairs
 - Self-reported exposures
 - OR=1.39 (1.30-1.49)
- US medical records
 - OR=1.47 (1.22-1.77)
- Meta-analysis RR=1.38 (1.31-1.47)
 - Similar for Leukemia & other cancers
- Cohort studies RR=1.13 (0.84-1.53)
 - 25 cases

Doll and Wakeford (Br J Radiology 1997); Wakeford (Radiat Prot Dosimetry 2008)
In Utero Exposures cont.

Childhood cancer and *in utero* radiation exposure (OSCC 1953-1972)

- **Dose per film**
 - 15mGy 1940s
 - 3mGy 1960s

- **Decline in risk by birth cohort**

Doll and Wakeford (Br J Radiology 1997)
Radiation Dose Response for Breast Cancer & Multiple Spine X-rays in 3,002 Scoliosis Patients

ERR/Gy=2.9 (-0.1 to 8.6)

140,000 X-rays
36 years follow-up

Mean (range):
27 (0-332) X-rays
120 (0-1110) mGy

Ronckers et al (Cancer Epidemiol Biomarkers Prev 2008)
Breast Cancer & Multiple Fluoroscopies in TB Patients

Massachusetts TB 4940 women (1925-54)
- Mean dose 0.8Gy (88 exposures)
- 234 breast cancers
- RR=1.61 at 1Gy

Canadian TB 31,710 women (1930-1952)
- 688 breast cancer deaths
- RR=1.36 (1.11-1.67) at 1Gy

Boice et al (Radiat Res 1991); Howe and McLaughlin (Radiat Res 1996); Howe (Radiat Res 1995);
Lung Cancer & Multiple Fluoroscopies in TB Patients

Massachusetts 13,572 patients (Mean dose 0.8Gy)
• 357 lung cancer deaths by 2002
• ERR/Gy -0.04 (-0.11 to 0.14)

Canadian TB (Mean dose 1Gy)
• 1178 lung cancer deaths
• ERR/Gy -0.00 (-0.04 to 0.07)

• Confounding by indication?
 – TB risk factor for lung cancer
 – Misclassification of cause of death (dose-dependent)?

IHD Mortality & Multiple Fluoroscopies in TB Patients

Canadian TB
- 5818 Ischemic Heart Disease deaths (Mean dose 0.8 Gy)
- \(\text{ERR/Gy} = 0.18 \) (95% CI: 0.01-0.39)
- Decrease with time since exposure and age at exposure

Zablotska et al (AJE 2014);
Breast cancer & Chest X-rays in BRCA carriers

Cohort n=1601 BRCA 1/2 mutation carriers
• Retrospective questionnaire
• Any chest X-ray HR=1.54 p=0.007
• Exposure <age 20 HR=4.64 p<0.001
• Gene-radiation interaction?
• Recall bias?

Case-control n=1600 pairs BRCA 1/2
• Any mammograms OR=1.03 (0.85-1.25)
• 1+ yrs before diagnosis
• Could not evaluate number of exposures

Andrieu et al (JCO 2006); Narod et al (Lancet Oncol 2006)
USRT Cohort – Personal Diagnostic X-rays

• Self-reported diagnostic exposures by type and calendar period
 – Biodosimetry for 152 technologists
 – Dose scores for red bone marrow
 – FISH whole chromosome painting for translocations
 – Expressed per 100 cell equivalents (CE)

Sigurdson et al (Cancer Res, 2008)
Translocation frequency versus personal diagnostic radiation red bone marrow dose “score”

0.04 excess translocations/100 CE/dose score, P = 0.003
Thyroid Cancer & Diagnostic X-rays

- 3 questionnaire based studies suggested associations
- Swedish medical records study
- 484 cases and matched popn controls
- Radiology records from hospitals
- 6148 X-rays 5+ yrs before diagnosis
- Generic thyroid dose estimates
- No risk associated with past X-rays
 - Dose 7-75 mGy OR=1.05 (0.7-1.5) P-trend=0.8
 - Similar results <age 20 exposure

Inskip et al (JNCI 1995)
Poor Recall of Diagnostic X-rays

• 123 cases & controls Sweden
• 50 cases & controls US
• Medical records vs Telephone interview

Berrington de Gonzalez et al (AJE 2003)
Leukemia, NHL & Multiple Myeloma Case-Control Study

Kaiser NW and Kaiser NC Health Plans – Record Linkage
• 565 Leuk, 318 NHL and 208 MM cases & 1390 controls
• Matched on age, sex, years in plan, year entered plan
• 25,000+ X-rays from medical records
• Bone marrow dose score
• 52% exposures were chest X-ray (0.1mGy)
• No clear evidence of association
 – Especially with 2+ years lag period

<table>
<thead>
<tr>
<th>Lag</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>p-trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mths</td>
<td>1.3</td>
<td>1.3</td>
<td>2.0</td>
<td>1.8</td>
<td>0.06</td>
</tr>
<tr>
<td>2 yrs</td>
<td>1.0</td>
<td>0.9</td>
<td>1.6</td>
<td>1.2</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Boice et al (JAMA 1991)
Dental X-rays & Cancer Risk

Thyroid cancer in USRT cohort (n=251)
- HR=1.13 (1.01-1.26) per 10 dental X-rays <1970

Parotid gland tumors
- 269 benign & 139 malignant tumors
- 408 neighbourhood controls
- OR=3.4 (1.02-11.5) for 50 rad vs 0 (p-trend<0.05)

Glioma (202 pairs) and meningioma (70 pairs)
- OR=1.5-3.0 for full-mouth dental x-rays

Meningioma (1443 pairs)
- OR=2.0 (1.4-2.9) for ever/never bite-wings

Dental X-rays cont

Australian case-control study
• Glioma OR 0.42 (0.24-0.76)
• Meningioma adult males – possible association

Swedish case-control study
• Meningioma OR 2.1 (1.0-4.3) for annual age 25+
• Other CNS - no association

Australian case-control study
• Childhood brain tumors – no association

• Recall similar for cases and controls
• Confounding by indication? (pain?)

Ryan et al (Eur J Cancer B Oral Oncol 1992); Rodvall et al (Oral Oncol 1998);
McCredie et al (Int J Cancer 1994)
Why Do We Study Screening Tests & Cancer Risk?

- Doses lower than diagnostic

 Eg 1mSv vs 10mSv for chest CT

- Older populations (eg 50+)

- Screening exposes large numbers of healthy individuals

- Benefits > Risks?

- Risk projection rather than direct studies

 - 2 mammograms at age 35 (10mGy)
 - 20 years follow-up
 - 60 million women for 50% power (Land, 1981)
Screening Examinations: Risk Projection

• Younger screening ages
 • Higher radiation risks & lower absolute mortality reduction

• Benefits > radiation risks
 • Mammography BRCA carriers > age 35
 • Lung CT smokers > age 50
 • CT colonography > age 50

Berrington de González et al (J Med Screen 2009)
Summary I

Fractionated low-dose diagnostic exposures can cause cancer

- Fluoroscopy TB studies
- Scoliosis cohort
- In utero
- Pediatric CT?
- Dental X-rays uncertain
- Effect of fractionation uncertain

Basis for conclusion

- Established carcinogen
- Dose-response
- Consistency with LSS data
- But... limited power <50mGy
Summary II

Attributes of key studies

- Relatively high exposure levels
- Or high risk sub-group (e.g., children, radio-sensitive?)
- Medical records for dose reconstruction to avoid recall bias
- Dose uncertainty complex, but << environmental exposures

Risk projection

- Alternative for timely assessment of potential risks