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Cancer Genomics: 4 Spaces 
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‘Drivers’ 
‘Passengers’ 

TCGA/ICGC- 
Cosmic Data 

>115 Cancer Syndromes 
>25 Moderate Penetrant  

>475 GWAS Loci 
BRCA1/2 

Lynch Syndrome 
ACMG “Actionable” 

Targeted Therapy 
HER2 
EGFR 

BRAF600 

Heterogeneity 
Metastases 



Why Study Germline Susceptibility? 
Explain heritability of cancers 

• Clustering - families and distinct populations 
• Sporadic cancer 

Risk assessment 
• Individual 
• Population-based 

Insights into the etiology of cancer 
• Gene-environment interactions 

• How the germline informs somatic alterations 
Pharmacogenomics  

• Response 
• Toxicity profiles 



Architecture of Genetic Susceptibility of Cancer 
Defining ‘Distinct’ Spaces 

After 
Manolio et al 2009 
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Not all affected develop cancer 
Modifiers - genetic & environmental 



Of the 115 

• Roughly 1/3 are recognized by ACMG and trigger 
recommendations for counseling  

• Types of Mutations 
• Indels/Stop Codons, NS & Structural 

• Many fit the model of ‘Autosomal Dominant’ 
• Ascertainment Biased by Family Studies 

• Linkage followed by targeted Sequencing 

• >50% are COSMIC ‘drivers’ in somatic databases 
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Virtually none are associated with outcomes 



Architecture of Genetic Susceptibility of Cancer 
Defining Distinct Spaces 

Damaging Drivers 

Perturbation 
Key pathways 



Thyroid Cancer (5) 
‘Sporadic’ 
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Published Cancer GWAS Etiology Hits: May 2015 



9q22.33 (FOXE1) 

• FOXE1- thyroid-specific 
transcription factor with 
pivotal roles in thyroid 
morphogenesis 

• increased risk of papillary 
and follicular thyroid 
cancer 

• associated in radiation 
exposed (Chernobyl) and 
unexposed thyroid cancer 
cases 



• NKX2-1- also thyroid-specific transcription factor 
with pivotal roles in thyroid morphogenesis 

• altered NKX2-1 expression levels in thyroid tumors 
• signal in both papillary and follicular, but not 

replicated in radiation exposed thyroid cases 

14q13.3 (NKX2-1) 



9q22.33  and 14q13.3  Risk Alleles Result in 
Reduced TSH Levels 



Common SNP Variants 
Influence Risk For 

Interactions with Known Carcinogens 
Radiation-induced Injury 

Therapeutic Effects 



P-interaction = 2.8x10-4  
      

Gene-Environment Interaction for Bladder Cancer Risk:  
NAT2 Slow Acetylation Increases Risk only for Smokers 

 

Rothman et al., Nat Genet 2010 
 



 
 
 

Cumulative 30-year Absolute Risk for Bladder Cancer  
in a 50 Year Old Male in the U.S., Overall and by 

Quartiles(based on smoking + 12 SNPs)  
 RD = risk differences for current vs. never smokers  

  
 

Garcia-Closas et al, Cancer Research 2013 
Furburg and Bochner, Nature Review Urology 2013 

Nat Rothman 

M Garcia-Closas 



Thought Experiment: 
If 100,000 smokers with high genetic risk stopped smoking 
 Eliminate  5,400 cases of bladder cancer 
If 100,000 smokers with low genetic risk stopped smoking 
 Eliminate 1,500 cases of bladder cancer 
 
Possible example of how genetic & environmental risk 
stratification might translate into targeted prevention 
 “Precision Prevention” 
 
 
 









Architecture of Genetic Susceptibility of Cancer 
Defining ‘Distinct’ Spaces 

After 
Manolio et al 2009 



Germline Susceptibility to Osteosarcoma: 
Most common primary bone tumors  

Lisa Mirabello 

Li-Fraumeni (TP53)  
Rothmund-Thomson Syndrome (RECQL4) 
Hereditary Retinoblastoma (RB) - as 2nd cancer  



Number of Patients with Germline TP53 Variants in 
765 Unselected Osteosarcoma Cases 

Mirabello et al JNCI 2015 



Frequency of Germline TP53 Variants in  
765 Unselected Osteosarcoma Cases 

 TP53 variants All 
(N=765) 

Age  
0-9   

(N=63) 

Age  
10-19  

(N=391) 

Age  
20-29  
(N=51) 

Age  
≥30 

 (N=51) 

LFS-associated 3.13% 4.76% 3.84% 1.96% 0 

Rare exonic 4.97% 3.18% 6.14% 5.88% 0 

Total  8.10% 7.94% 9.98% 7.84% 0 

P< 0.001  

Consider genetic counseling & TP53-mutation testing  
in young patients with osteosarcoma,  
Especially if there is history of cancer in close relatives  
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Pipeline for Comprehensive Characterization: 
The Cancer Genome Atlas (TCGA) >20 Cancers 
Tissue Sample 

Pathology QC 

DNA & RNA 
Isolation, QC 

Sequencing 

Expression, 
CNA & LOH, 
Epigenetics 

Data 
Storage at 

DCC & 
CGHub 

Comprehensive  
Characterization 

  of a Cancer Genome 

GDAC 

Integrative 
Analysis  

~90d 
SNP 6.0 ~45d 

Methylation ~60d 

miRNAseq  ~105d 

mRNAseq ~120d 

DNAseq Exome  ~180d 
~12-24 months 

3 months – 2 years 

Target: 500 cases for Major Cancers and 50-100 for Rarer Cancers 
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Lessons Learned from the Data 
The Cancer Genome Atlas (TCGA) 

M. Lawrence & G. Getz/Broad Institute 

Thyroid = 0.41 non-silent mutations per Mb 



Lawrence et al, Nature 2014 

Many Cancer Drivers With <20% Prevalence 
Remain Undiscovered 

 



Simple model of thyroid cancer progression 

80-85% 
TCGA 

Mingzhao Xing, JHU 

Loss of differentiation 



Driver Mutations in Thyroid -2013 

BRAF 

RAS 

PTEN 

PICK3A 

CTNNB1 
TP53 

ALK 



496 primary Papillary Thyroid Cancers 
391 on all major platforms 
All ‘Sporadic’ 



TCGA Thyroid- DNA Sequencing 
Mutation density increases with age 



Mutation density associated with high risk of 
recurrence (after correcting for age) 



New Finding:     EIF1AX  
Translation initiation factor 1A, X-linked 

Endometrium, breast, colon, 
lung, esophagus, ovary and 
prostate 

THCA:  
6 mutations  

COSMIC:  
19 mutations  

Uveal melanoma 
20 mutations 

Pan-can 
EIF1AX count 



Large Structural Events: Gene Fusions 

• New RET partners 
 
 

• Diverse BRAF fusions 
 

 
 
• ALK fusions, diverse 

–  (EML4-ALK) 

• ETV6-NTRK3 
 

 
 

Angela Hadjipanayis, Harvard 
Katie Hoadley, UNC 
Chip Stewart, Broad Institute 



Overview of Somatic Alterations 
Mutation rate 

Clinical info 

Significant 
Mutations 

Fusions 

SCNAs 

Driver summary 



The “Dark Matter” of the Cancer Genome 

• Regions of the genome that 
we cannot easily interpret 

• Examples:  
– regulatory regions 
– intergenic regions 
– repeat-rich DNA 
– “non-focal” copy number 

alterations 



TERT Promoter Mutations in Thyroid Cancer 



TERT Promoter Mutations in TCGA Cohort 

TERT promoter mutations are 
associated with high risk of 
recurrence, poor survival 
prediction and low thyroid 
differentiation 

Chip Stewart and others, Broad Institute 



BRAF-V600E and RAS Mutations are 
Mutually Exclusive 

Giovanni Ciriello at MSKCC and Katie Hoadley at UNC developed a gene 
expression based score that measures whether a tumor has expression like a 
BRAF- or a RAS-mutant tumor 



Thyroid 
Differentiation 

Score 
Gene Expression Set  

 

Remember miR-21 and 
miR-146b 



Visual 
Summary 

 
Thyroid  

TCGA 



Full Genomic Characterization (TCGA-style) 
of Radiation-Related  

Thyroid Cancer in the Ukraine 

Gene-Environment Opportunity 



Focused Molecular Studies of Thyroid Cancer: 
UkrAm 

• Somatic mutation analyses (jointly with Dr. Nikiforov) 

 Dose-related increase in MAPK* gene rearrangements, but not in BRAF/RAS 
point mutations 

 Strong dose response for remaining 30% of tumors with no candidate-gene 
mutations 

• Gene expression studies (jointly with Dr. Abend) 

 Differential tumor/non-tumor gene expression in relation to dose  identified 
several candidate genes/pathways 

 Additional genes with dose-dependent gene expression either in tumor or 
non-tumor thyroid tissue found 

Abend et al. PlosOne, 2013 & BJC, 2013   
Leeman-Neil et al. Cancer, 2013 & Cancer, 2014 

*Mitogen-activated protein kinase signaling pathway 
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Specific Aims & Analysis Plan 
• Primary – Comprehensive characterization of the genomic 

alterations of radiation-related PTC 
Compare radiation-related PTCs against sporadic PTC in 

TCGA to identify possible signature of radiation-related 
somatic alterations 
Across levels of I-131 exposure 
Prefer Fresh Frozen but can use FFPE 

 
• Secondary – Evaluate gene-radiation interactions and 

contribution of genetic susceptibility to risk of PTC using 
germline DNA data 

 



CTB: I-131 thyroid  doses 
Group  Basis for dose reconstruction 

 
Available, 

N 
Mean I-131 

dose, Gy 
(range) 

Mean GSD* 

1 Direct thyroid measurement and personal 
interview 

165 1.2 
(0.001-13) 

1.5 

2 Direct thyroid measurement, but no personal 
interview 

19 1.9 
(0.008-13) 

1.5 

3 No direct thyroid measurement and no 
personal interview 

1,685  0.13 
(0.001-24.1) 

 3.3 

4 Exposed in utero 64 0.10  
(<0.001-2.1) 

3.8 

5 Not-exposed, born after Jan 1, 1987   310 

Total 2,243** 

*Geometric standard deviation, measure of dose uncertainty  
**For 24 cases place of residence in 1986 is unknown  

Likhtarov et al. Radiat Prot Dosimetry, 2013 



 
UkrAm Pilot  

Molecular-Genetic study 
12 PTC cases: 

4-low; 4-middle; 4-high dose groups;   
6 – from Zhitomir; 6 – from Chernigov regions; 

7-Femaile; 5-Male 

Paraffin embedded 
blocks 

Frozen tissue 
samples 

Blood samples 
EDTA x2 

Pathology 
information Clinical information IRB permission 

Comprehensive Characterization in TCGA Pipeline 



Exome Sequencing  

Figure 5: Median Insert Size in sequencing libraries; FF and Blood 
samples are shaded blue, FFPE samples are shaded green  



Exome Coverage Uniformity Metrics; the red dotted line represents typical target 
coverage for 80% of targets for germline variant exome sequencing; FF and blood 
sample codes are shaded blue, and FFPE sample codes are shaded green  

Exome Sequencing  



Pilot study: Exome Analysis: 
Preliminary Assessment of DNA Seq 

• Known Mutations 
 BRAF (2) 
 V600E in RNA & Exome (1) 

 TP52 
 ALK 
 CHEK2 



RNA-Seq QC  

Distribution of log2 fold-change between a matched FF and FFPE sample 



Pairwise Analysis of Matched Tumor/Normal Data - 
Significantly Dysregulated miRs 

miRNAs Significantly Up-regulated in Tumor vs Normal (>8-fold) 

miR Follicular Variant 
(n=5) 

Papillary, Other 
(n=4) 

Classical subtype 
(n=1) 

All Tumor Pairs         
(n=10) 

Reference(s)       
(Thyroid Studies) 

hsa-mir-146b 5 3 1 9 Chen, et al. 2008; He et 
al. 2005; Nikiforova et al. 

2008 
hsa-mir-221 5 3 1 9 
hsa-mir-222 5 3 1 9 

hsa-mir-31 4 3 1 8 Tetzlaff et al., 2007, 
Nikiforova et al. 2008 

hsa-mir-375 3 2 1 6 Dettmer et al. 2013  
hsa-mir-34a 1 1 1 3 Tetzlaff et al., 2007 
hsa-mir-187 1 2 0 3 Nikiforova et al. 2008 
hsa-mir-891a 2 1 0 3   

miRNAs Significantly Down-regulated in Tumor vs Normal (<-8-fold) 

miR Follicular Variant 
(n=5) 

Papillary, Other 
(n=4) 

Classical subtype 
(n=1) 

All Tumor Pairs            
(n=10) 

Reference         (Thyroid 
Studies) 

hsa-mir-486 2 4 1 7 Braun et al. 2010 
hsa-mir-675 3 3 1 7   
hsa-mir-144 1 3 1 5  Rossing et al. 2012 
hsa-mir-7-3 2 2 1 5   
hsa-mir-136 1 2 1 4   

Note: Tumors without matching normals were excluded from this analysis; 
Differential expression using a pairwise approach was measured by calculating the log2 fold-change of tumor miRNA counts relative to the matched normal (DESeq/Bioconductor); miR's 
were ranked according to the most significant fold-change (cut-off of log2FC of <-3 and >3; equivalent to 8-fold/-8-fold change) 



Significantly Up-Regulated miRs 146b, 221 & 222 –  Cell Cycle 
Regulation 

Pallante, et al. Deregulation of microRNA Expression in Thyroid Neoplasias. Nat. Rev. Endocrinol. 2013 



Integration of Methylation & miRNA Data – miR-146b 
• Identified reduced methylation at predicted transcription start site (TSS) of miR-146b in tumor samples 

• Methylation was reduced by 40 - 50% on average in tumors relative to normals 

• Demethylation in the tumors may be contributing to the over-expression of miR-146b observed in the miRNA data  

probeID hg19 Coordinates arm Gene P.Value 

cg09701700 chr10:104194843 q MIR146B 3.46E-06 
cg05251190 chr10:104196206 q MIR146B 2.73E-04 
cg05858126 chr10:104196213 q MIR146B 1.08E-04 
cg15857661 chr10:104196243 q MIR146B 2.90E-05 
cg13442016 chr10:104196339 q MIR146B 1.88E-05 
cg08101174 chr10:104196541 q NA 4.43E-05 

Pre-miRNA-146b 
(73bp) 

Predicted TSS #1 

Methylation 
Probes 

~1.5kb 

TSS1500 TSS200 

BODY IGR 

Predicted TSS #2 



Ukrainian CTB Cases: 
 1998-2012 

2,267 cases of benign and malignant thyroid 
pathology 

Paraffin embedded blocks Frozen tissue samples Blood samples 

Tumor(s) – 1-4 blocks per case  
Normal – 1-3 blocks per case  
Mts - 1-3 blocks per case  

1,726 cases 919 cases 2,267 cases 
Tumor(s) – 1-4 samples per case  
Normal – 1-3 samples per case  
Mts - 1-3 samples per case  

EDTA - 2 samples per case  
Serum - 2 samples per case  
 

Courtesy of Dr. Bogdanova 



Target for Number of Cases 

• 450 radiation-related PTC cases from CTB  
100 UkrAm*   
350 non-UkrAm*    
 

• 550 sporadic (non-irradiated) PTC cases 
50 CTB* cases born after Jan 1, 1987 
Part of this proposal 

500 cases from TCGA 
Available to researchers based on Cell 159:676, 2014 

 
*From Zhytomyr, Chernihiv, Kyiv region, and Kyiv city 



Parental irradiation of Ukrainian 
clean-up workers and evacuees and 

germline mutations in their offspring 
(TRIO Study) 



Background 
 No reliable evidence of untoward pregnancy outcomes, 

childhood mortality, or sex chromosome aneuploidy 
associated with parental radiation exposure in Japanese A-
bomb F1 or other studies 
 Statistical power in A-bomb F1 study is low for endpoints  

 Based on 7-locus mouse data (Russell et al) and non-
significant  indications from the A-bomb F1 study, ICRP 
assumes parental radiation exposure induces a large 
spectrum of genetic effects in offspring 
 Doubling dose (DD) of about 1 Gy  

DD =  Radiation dose expected to double the spontaneous 
mutations rate in a generation 



Objectives 
• Comprehensive characterization of genomic alterations and inherited 

variation patterns in trios (parents and children) associated with pre-
conception exposure to radiation from the Chernobyl accident: 
– de novo mutations 
– Single nucleotide polymorphisms 
– Minisatellite mutations 
– Copy number variations  
– Somatic mutations 
– Mosaicism 
– Variation in telomere length 
– Methylation 

• Overlap of de novo mutations, copy number changes with genes 
linked to known diseases 
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Timeframe of Exposure  
Time of the Chernobyl accident 

April 26, 1986 

Evacuation from Pripyat-tome April 
27, 1986 

Moving to place of permanent 
residence 

Staying at place of evacuation 
up to a few weeks  

Time of conception 

Childbirth 

Exposure during clean-up mission 

Exposure during residence in Pripyat-town 

Residential exposure 

All trios with children  
born > 1 year accident 



Target Trio Numbers 

• Initial study: Recruit 50 trios, selected from risk 
categories (10 trios for each of 5 groups): 

• Exposed father, exposed mother 
• Exposed father, unexposed mother 
• Unexposed father, exposed mother 
• Unexposed father, unexposed mother 
• High dose emergency worker (fathers only, with acute radiation 

syndrome) 

• Full study aims to recruit up to 450 trios from 
exposed and/or unexposed parents 
 
 
 



Future collaborations 

• Existing radiation studies 
– RERF atomic-bomb survivors 
– Mayak nuclear plant workers 
– Childhood cancer survivors 

 

 





Mission 
 
To accelerate progress in human health by helping to establish a 

common framework of harmonized approaches to enable 
effective and responsible sharing of genomic and clinical data, 
and by catalyzing data sharing projects that drive and 
demonstrate the value of data sharing 

 



GDC 

Utility of a Cancer Knowledge System 

Identify 
low-frequency 
cancer drivers 

Define genomic 
determinants of response 

to therapy 

Compose clinical trial 
cohorts sharing 

targeted genetic lesions 

Cancer 
information 

donor 
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