Skip to main content
Discovering the causes of cancer and the means of prevention
 

References from the Confluence Project Description

References

  1. Michailidou, K, Lindstrom S, Dennis J, Beesley J, Hui S, Kar S, Lemacon A, Soucy P, Glubb D, Rostamianfar A, et al. Association analysis identifies 65 new breast cancer risk loci. Nature, 2017. 551(7678): p. 92-94.
  2. Milne, RL, Kuchenbaecker KB, Michailidou K, Beesley J, Kar S, Lindstrom S, Hui S, Lemacon A, Soucy P, Dennis J, et al. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nat Genet, 2017. 49(12): p. 1767-1778.
  3. Cai, Q, Zhang B, Sung H, Low SK, Kweon SS, Lu W, Shi J, Long J, Wen W, Choi JY, et al. Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1. Nat Genet, 2014. 46(8): p. 886-90.
  4. Garcia-Closas, M, Couch FJ, Lindstrom S, Michailidou K, Schmidt MK, Brook MN, Orr N, Rhie SK, Riboli E, Feigelson HS, et al., Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nat Genet, 2013. 45(4): p. 392-8, 398e1-2.
  5. Sawyer, E, Roylance R, Petridis C, Brook MN, Nowinski S, Papouli E, Fletcher O, Pinder S, Hanby A, Kohut K, et al. Genetic predisposition to in situ and invasive lobular carcinoma of the breast. PLoS Genet, 2014. 10(4): p. e1004285. 
  6. Ahearn, TU, Zhang H, Lecarpentier J, Michailidou K, Milne RL, Couch FJ, Simard J, Kraft P, Easton D, Pharoah P, et al. Novel analysis incorporating multiple tumor characteristics provide evidence of highly heterogeneous associations for known breast cancer risk loci, in The American Society of Human Genetics Annual Meeting. 2017: Orlando, FL. p. 657.
  7. Couch, FJ, Hart SN, Sharma P, Toland AE, Wang X, Miron P, Olson JE, Godwin AK, Pankratz VS, Olswold C, et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol, 2015. 33(4): p. 304-11.
  8. Zhang, H, Lecarpentier J, Ahearn TU, Michailidou K, Milne RL, Kraft P, Simard J, Pharoah P, Schmidt MK, Easton D, et al. Genome-wide association study (GWAS) identifies 9 novel breast cancer loci from analyses accounting for subtype heterogeneity, in The American Society of Human Genetics Annual Meeting. 2017: Orlando, FL.
  9. Kuchenbaecker, KB, McGuffog L, Barrowdale D, Lee A, Soucy P, Dennis J, Domchek SM, Robson M, Spurdle AB, Ramus SJ, et al. Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers. J Natl Cancer Inst, 2017. 109(7).
  10. Kuchenbaecker, KB, Neuhausen SL, Robson M, Barrowdale D, McGuffog L, Mulligan AM, Andrulis IL, Spurdle AB, Schmidt MK, Schmutzler RK, et al. Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res, 2014. 16(6): p. 3416.
  11. Garcia, ME, Guo Q, Wessels L, Bader G, Pharoah P, Chenevix-Trench G, Easton D, Canisius S, and Schmidt M. Abstract 2271: Pathway analysis suggests biological processes driven by germline genetic associations with breast cancer prognosis. Cancer Research, 2018. 78(13 Supplement): p. 2271-2271.
  12. Guo, Q, Schmidt MK, Kraft P, Canisius S, Chen C, Khan S, Tyrer J, Bolla MK, Wang Q, Dennis J, et al. Identification of novel genetic markers of breast cancer survival. J Natl Cancer Inst, 2015. 107(5).
  13. Pirie, A, Guo Q, Kraft P, Canisius S, Eccles DM, Rahman N, Nevanlinna H, Chen C, Khan S, Tyrer J, et al. Common germline polymorphisms associated with breast cancer-specific survival. Breast Cancer Res, 2015. 17: p. 58.
  14. Gavin, PG, Song N, Kim SR, Lipchik C, Johnson NL, Bandos H, Finnigan M, Rastogi P, Fehrenbacher L, Mamounas EP, et al. Association of Polymorphisms in FCGR2A and FCGR3A With Degree of Trastuzumab Benefit in the Adjuvant Treatment of ERBB2/HER2-Positive Breast Cancer: Analysis of the NSABP B-31 Trial. JAMA Oncol, 2017. 3(3): p. 335-341.
  15. Hurvitz, SA, Betting DJ, Stern HM, Quinaux E, Stinson J, Seshagiri S, Zhao Y, Buyse M, Mackey J, Driga A, et al. Analysis of Fcgamma receptor IIIa and IIa polymorphisms: lack of correlation with outcome in trastuzumab-treated breast cancer patients. Clin Cancer Res, 2012. 18(12): p. 3478-86.
  16. Goetz, MP, Sangkuhl K, Guchelaar HJ, Schwab M, Province M, Whirl-Carrillo M, Symmans WF, McLeod HL, Ratain MJ, Zembutsu H, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and Tamoxifen Therapy. Clin Pharmacol Ther, 2018. 103(5): p. 770-777.
  17. Khan, S, Fagerholm R, Kadalayil L, Tapper W, Aittomaki K, Liu J, Blomqvist C, Eccles D, and Nevanlinna H. Meta-analysis of three genome-wide association studies identifies two loci that predict survival and treatment outcome in breast cancer. Oncotarget, 2018. 9(3): p. 4249-4257.
  18. Leyland-Jones, B, Gray KP, Abramovitz M, Bouzyk M, Young B, Long B, Kammler R, Dell’Orto P, Biasi MO, Thürlimann B, et al. CYP19A1 polymorphisms and clinical outcomes in postmenopausal women with hormone receptor-positive breast cancer in the BIG 1–98 trial. Breast Cancer Research and Treatment, 2015. 151(2): p. 373-384.
  19. Ingle, JN, Schaid DJ, Goss PE, Liu M, Mushiroda T, Chapman JA, Kubo M, Jenkins GD, Batzler A, Shepherd L, et al. Genome-wide associations and functional genomic studies of musculoskeletal adverse events in women receiving aromatase inhibitors. J Clin Oncol, 2010. 28(31): p. 4674-82.
  20. Johansson, H, Gray KP, Pagani O, Regan MM, Viale G, Aristarco V, Macis D, Puccio A, Roux S, Maibach R, et al. Impact of CYP19A1 and ESR1 variants on early-onset side effects during combined endocrine therapy in the TEXT trial. Breast Cancer Res, 2016. 18(1): p. 110.
  21. Leyland-Jones, B, Gray KP, Abramovitz M, Bouzyk M, Young B, Long B, Kammler R, Dell’Orto P, Biasi MO, Thürlimann B, et al. ESR1 and ESR2 polymorphisms in the BIG 1-98 trial comparing adjuvant letrozole versus tamoxifen or their sequence for early breast cancer. Breast Cancer Research and Treatment, 2015. 154(3): p. 543-555.
  22. Abraham, JE, Guo Q, Dorling L, Tyrer J, Ingle S, Hardy R, Vallier AL, Hiller L, Burns R, Jones L, et al. Replication of genetic polymorphisms reported to be associated with taxane-related sensory neuropathy in patients with early breast cancer treated with Paclitaxel. Clin Cancer Res, 2014. 20(9): p. 2466-75.
  23. Baldwin, RM, Owzar K, Zembutsu H, Chhibber A, Kubo M, Jiang C, Watson D, Eclov RJ, Mefford J, McLeod HL, et al. A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin Cancer Res, 2012. 18(18): p. 5099-109.
  24. Schneider, BP, Li L, Radovich M, Shen F, Miller KD, Flockhart DA, Jiang G, Vance G, Gardner L, Vatta M, et al. Genome-Wide Association Studies for Taxane-Induced Peripheral Neuropathy in ECOG-5103 and ECOG-1199. Clin Cancer Res, 2015. 21(22): p. 5082-5091.
  25. Sucheston-Campbell, LE, Clay-Gilmour AI, Barlow WE, Budd GT, Stram DO, Haiman CA, Sheng X, Yan L, Zirpoli G, Yao S, et al. Genome-wide meta-analyses identifies novel taxane-induced peripheral neuropathy-associated loci. Pharmacogenet Genomics, 2018. 28(2): p. 49-55.
  26. Dorling, L, Kar S, Michailidou K, Hiller L, Vallier AL, Ingle S, Hardy R, Bowden SJ, Dunn JA, Twelves C, et al. The Relationship between Common Genetic Markers of Breast Cancer Risk and Chemotherapy-Induced Toxicity: A Case-Control Study. PLoS One, 2016. 11(7): p. e0158984.
  27. Andreassen, CN, Rosenstein BS, Kerns SL, Ostrer H, De Ruysscher D, Cesaretti JA, Barnett GC, Dunning AM, Dorling L, West CML, et al. Individual patient data meta-analysis shows a significant association between the ATM rs1801516 SNP and toxicity after radiotherapy in 5456 breast and prostate cancer patients. Radiother Oncol, 2016. 121(3): p. 431-439.
  28. Barnett, GC, Thompson D, Fachal L, Kerns S, Talbot C, Elliott RM, Dorling L, Coles CE, Dearnaley DP, Rosenstein BS, et al. A genome wide association study (GWAS) providing evidence of an association between common genetic variants and late radiotherapy toxicity. Radiother Oncol, 2014. 111(2): p. 178-85.
  29. Grossberg, AJ, Lei X, Xu T, Shaitelman SF, Hoffman KE, Bloom ES, Stauder MC, Tereffe W, Schlembach PJ, Woodward WA, et al. Association of Transforming Growth Factor beta Polymorphism C-509T With Radiation-Induced Fibrosis Among Patients With Early-Stage Breast Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol, 2018. 4(12): p. 1751-1757.
  30. Zhao, J, Zhi Z, Zhang M, Li Q, Li J, Wang X, and Ma C. Predictive value of single nucleotide polymorphisms in XRCC1 for radiation-induced normal tissue toxicity. Onco Targets Ther, 2018. 11: p. 3901-3918.
  31. Dorling, L, Barnett GC, Michailidou K, Coles CE, Burnet NG, Yarnold J, Elliott RM, Dunning AM, Pharoah PD, and West CM. Patients with a High Polygenic Risk of Breast Cancer do not have An Increased Risk of Radiotherapy Toxicity. Clin Cancer Res, 2016. 22(6): p. 1413-20.
  32. Zheng, W, Long J, Gao YT, Li C, Zheng Y, Xiang YB, Wen W, Levy S, Deming SL, Haines JL, et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet, 2009. 41(3): p. 324-8.
  33. Han, MR, Long J, Choi JY, Low SK, Kweon SS, Zheng Y, Cai Q, Shi J, Guo X, Matsuo K, et al. Genome-wide association study in East Asians identifies two novel breast cancer susceptibility loci. Hum Mol Genet, 2016. 25(15): p. 3361-3371.
  34. Feng, Y, Rhie SK, Huo D, Ruiz-Narvaez EA, Haddad SA, Ambrosone CB, John EM, Bernstein L, Zheng W, Hu JJ, et al. Characterizing Genetic Susceptibility to Breast Cancer in Women of African Ancestry. Cancer Epidemiol Biomarkers Prev, 2017. 26(7): p. 1016-1026.
  35. Huo, D, Feng Y, Haddad S, Zheng Y, Yao S, Han YJ, Ogundiran TO, Adebamowo C, Ojengbede O, Falusi AG, et al. Genome-wide association studies in women of African ancestry identified 3q26.21 as a novel susceptibility locus for oestrogen receptor negative breast cancer. Hum Mol Genet, 2016. 25(21): p. 4835-4846.
  36. Feng, Y, Stram DO, Rhie SK, Millikan RC, Ambrosone CB, John EM, Bernstein L, Zheng W, Olshan AF, Hu JJ, et al. A comprehensive examination of breast cancer risk loci in African American women. Hum Mol Genet, 2014. 23(20): p. 5518-26.
  37. Fejerman, L, Ahmadiyeh N, Hu D, Huntsman S, Beckman KB, Caswell JL, Tsung K, John EM, Torres-Mejia G, Carvajal-Carmona L, et al. Genome-wide association study of breast cancer in Latinas identifies novel protective variants on 6q25. Nat Commun, 2014. 5: p. 5260.
  38. Fejerman, L, Chen GK, Eng C, Huntsman S, Hu D, Williams A, Pasaniuc B, John EM, Via M, Gignoux C, et al. Admixture mapping identifies a locus on 6q25 associated with breast cancer risk in US Latinas. Hum Mol Genet, 2012. 21(8): p. 1907-17.
  39. Hoffman, J, Fejerman L, Hu D, Hunstman S, Li M, John E, Torres-Mejia G, Kushi L, Ding YC, Weitzel J, et al. Identification of Novel Common Breast Cancer Risk Variants in Latinas at the 6q25 Locus. bioRxiv, 2018: p. 343806.
  40. Orr, N, Lemnrau A, Cooke R, Fletcher O, Tomczyk K, Jones M, Johnson N, Lord CJ, Mitsopoulos C, Zvelebil M, et al. Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk. Nat Genet, 2012. 44(11): p. 1182-4.
  41. Mavaddat, N, Michailidou K, Dennis J, Lush M, Fachal L, Lee A, Tyrer JP, Chen TH, Wang Q, Bolla MK, et al. Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. Am J Hum Genet, 2018.
  42. Mavaddat, N, Pharoah PD, Michailidou K, Tyrer J, Brook MN, Bolla MK, Wang Q, Dennis J, Dunning AM, Shah M, et al. Prediction of breast cancer risk based on profiling with common genetic variants. J Natl Cancer Inst, 2015. 107(5).
  43. Lee, A, Mavaddat N, Wilcox AN, Cunningham AP, Carver T, Hartley S, Babb de Villiers C, Izquierdo A, Simard J, Schmidt MK, et al. BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet Med, 2019.
  44. Lecarpentier, J, Silvestri V, Kuchenbaecker KB, Barrowdale D, Dennis J, McGuffog L, Soucy P, Leslie G, Rizzolo P, Navazio AS, et al. Prediction of Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 Mutation Carriers Using Polygenic Risk Scores. J Clin Oncol, 2017. 35(20): p. 2240-2250.
  45. Maas, P, Barrdahl M, Joshi AD, Auer PL, Gaudet MM, Milne RL, Schumacher FR, Anderson WF, Check D, Chattopadhyay S, et al. Breast Cancer Risk From Modifiable and Nonmodifiable Risk Factors Among White Women in the United States. JAMA Oncol, 2016. 2(10): p. 1295-1302.
  46. Pashayan, N, Morris S, Gilbert FJ, and Pharoah PDP. Cost-effectiveness and Benefit-to-Harm Ratio of Risk-Stratified Screening for Breast Cancer: A Life-Table Model. JAMA Oncol, 2018. 4(11): p. 1504-1510.
  47. Garcia-Closas, M, Gunsoy NB, and Chatterjee N. Combined associations of genetic and environmental risk factors: implications for prevention of breast cancer. J Natl Cancer Inst, 2014. 106(11).
  48. Wilkinson, MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten J-W, da Silva Santos LB, Bourne PE, et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 2016. 3: p. 160018.
  49. Bhattacharjee, S, Rajaraman P, Jacobs KB, Wheeler WA, Melin BS, Hartge P, GliomaScan C, Yeager M, Chung CC, Chanock SJ, et al. A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits. Am J Hum Genet, 2012. 90(5): p. 821-35.
  50. Zhang, H, Zhao N, Ahearn TU, Wheeler WA, Garcia-Closas M, and Chatterjee N. A mixed-model approach for powerful testing of genetic associations with cancer risk incorporating tumor characteristics. bioRxiv, 2018: p. 446039.
  51. Yu, K, Zhang H, Wheeler W, Horne HN, Chen J, and Figueroa JD. A robust association test for detecting genetic variants with heterogeneous effects. Biostatistics, 2015. 16(1): p. 5-16.
  52. Barnes, DR, Lee A, Investigators E, kConFab I, Easton DF, and Antoniou AC. Evaluation of association methods for analysing modifiers of disease risk in carriers of high-risk mutations. Genet Epidemiol, 2012. 36(3): p. 274-91.
  53. Antoniou, AC, Wang X, Fredericksen ZS, McGuffog L, Tarrell R, Sinilnikova OM, Healey S, Morrison J, Kartsonaki C, Lesnick T, et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet, 2010. 42(10): p. 885-92.
  54. Willer, CJ, Li Y, and Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics, 2010. 26(17): p. 2190-1.
  55. Gusev, A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW, Jansen R, de Geus EJ, Boomsma DI, Wright FA, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet, 2016. 48(3): p. 245-52.
  56. Finucane, HK, Reshef YA, Anttila V, Slowikowski K, Gusev A, Byrnes A, Gazal S, Loh PR, Lareau C, Shoresh N, et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat Genet, 2018. 50(4): p. 621-629.
  57. Gamazon, ER, Segre AV, van de Bunt M, Wen X, Xi HS, Hormozdiari F, Ongen H, Konkashbaev A, Derks EM, Aguet F, et al. Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nat Genet, 2018. 50(7): p. 956-967.
  58. Ferreira, MA, Gamazon ER, Al-Ejeh F, Aittomaki K, Andrulis IL, Anton-Culver H, Arason A, Arndt V, Aronson KJ, Arun BK, et al. Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nat Commun, 2019. 10(1): p. 1741.
  59. Finucane, HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh PR, Anttila V, Xu H, Zang C, Farh K, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet, 2015. 47(11): p. 1228-35.
  60. Hormozdiari, F, van de Bunt M, Segre AV, Li X, Joo JWJ, Bilow M, Sul JH, Sankararaman S, Pasaniuc B, and Eskin E. Colocalization of GWAS and eQTL Signals Detects Target Genes. Am J Hum Genet, 2016. 99(6): p. 1245-1260.
  61. Yang, J, Zeng J, Goddard ME, Wray NR, and Visscher PM. Concepts, estimation and interpretation of SNP-based heritability. Nat Genet, 2017. 49(9): p. 1304-1310.
  62. Zhang, Y, Qi G, Park JH, and Chatterjee N. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits. Nat Genet, 2018. 50(9): p. 1318-1326.
  63. Pal Choudhury, P, Maas P, Wilcox A, Wheeler W, Brook M, Check D, Garcia-Closas M, and Chatterjee N. iCARE: An R Package to Build, Validate and Apply Absolute Risk Models. bioRxiv, 2018: p. 079954.
  64. Choudhury PP, Wilcox AN, Brook MN, Zhang Y, Ahearn T, Orr N, Coulson P, Schoemaker MJ, Jones ME, Gail MH, et al. Comparative validation of breast cancer risk prediction models and projections for future risk stratification. J Natl Cancer Inst, 2019.