
Package ‘EXPERT’
December 6, 2010

Title A package for Extremely small P-value Evaluation for Resampling-based Tests

Version 0.0.1

Date 2010-12-06

Author Kai Yu and Faming Liang

Description A package for efficient p-value evaluation for resampling-based tests

Maintainer Kai Yu <yuka@mail.nih.gov>

Depends R (>= 2.10.1)

License GPL-2

R topics documented:
EXPERT . 1
MAX.test.statistic . 2
proposal.permute.matrix . 3
proposal.permute.vector . 4
SAMC.adapt . 5
SAMC.fun . 7
t.test.statistic . 8

Index 9

EXPERT A package for Extremely small P-value Evaluation for Resampling-
based Tests

Description

An R package for efficient p-value estimation for resampling-based tests.

Details

The main function in this package is SAMC.adapt which uses the SAMC (Stochastic Approxi-
mation Monte Carlo) method to estimate the p-value for an observed test statistic. In order to use
this function, the user must provide two functions: one function for calculating the test statistic, and
another function for updating the input data.

1

2 MAX.test.statistic

Author(s)

Kai Yu <yuka@mail.nih.gov> and Faming Liang

References

Yu K, Liang F, Ciampa J, Chatterjee N. Efficient p-value evaluation for resampling-based tests
(Submitted manuscript).

MAX.test.statistic Calculate the maximum value of multiple Cochran-Armitage trend test
statistics

Description

A function to calculate the MAX test statistic, i.e., the maximum value of multiple Cochran-
Armitage trend test statistics performed on a set genetic markers (e.g. SNPs).

Usage

MAX.test.statistic(data.input)

Arguments

data.input A list of two components, x and y, which are matrices containing genotypes
on a set of genetic markers from cases and controls, where the rows are for
subjects and columns for the markers. Each element takes the value 0, 1, or 2,
representing the number of copies of a certain allele in the genotype.

Value

The value of the test statistic

See Also

proposal.permute.matrix

Examples

MAX.test.statistic

proposal.permute.matrix 3

proposal.permute.matrix
Example function for the fun.proposal argument of the SAMC.adapt()
function

Description

This function updates the inpute data by randomly switching any chosen pair of rows from two
matrices.

Usage

proposal.permute.matrix(data.input, prop.change)

Arguments

data.input A list of two components, x and y, which are matrices containing genotypes
on a set of genetic markers from cases and controls, where the rows are for
subjects and columns for the markers. Each element takes the value 0, 1, or 2,
representing the number of copies of a certain allele in the genotype.

prop.change The proportion of the rows in the smaller matrix to be switched with chosen
rows from the other matrix.

Details

This function can be used together with MAX.test.statistic. See the reference on exactly
how the permutations are conducted.

Value

The updated version of data.input.

References

Yu K, Liang F, Ciampa J, Chatterjee N. Efficient p-value evaluation for resampling-based tests
(Submitted manuscript).

See Also

MAX.test.statistic, SAMC.adapt

Examples

proposal.permute.matrix

4 proposal.permute.vector

proposal.permute.vector
Example function for the fun.proposal argument of the SAMC.adapt()
function

Description

This function updates the inpute data by randomly switching any chosen pair of elements from two
vectors.

Usage

proposal.permute.vector(data.input, prop.change)

Arguments

data.input The example input data object

prop.change The proportion of data to be updated

Details

This function can be used together with t.test.statistic. See the reference on exactly how
the permutations are conducted.

Value

The updated version of data.input.

References

Yu K, Liang F, Ciampa J, Chatterjee N. Efficient p-value evaluation for resampling-based tests
(Submitted manuscript).

See Also

t.test.statistic, SAMC.adapt

Examples

proposal.permute.vector

SAMC.adapt 5

SAMC.adapt SAMC (Stochastic Approximation Monte Carlo) method for small p-
value estimation

Description

To estimate the p-value for an observed test statistic based on the SAMC (Stochastic Approximation
Monte Carlo) method.

Usage

SAMC.adapt(data.input, t.obs, t.start=0, n.iter.1=200000, n.iter.2=1000000,
n.region.1=101, n.region.2=301, prop.change=0.05, gain.factor.t0=1000,
fun.test.statistic=NULL, fun.proposal=NULL, ...)

Arguments

data.input The input data, which can be any data object, e.g. data frame, list, etc., as long as
it is compatible with the two user provided functions fun.test.statistic
and fun.proposal.

t.obs The threshold at which the tail probability is to be calculated. For example, this
value can be set to the observed test statistic. The estimated p-value for this
value will be computed.

t.start The minimum value for the considered test statistic. The default is 0.

n.iter.1 The number of iterations used for the initial run with subregions defined uni-
formly in the interval [t.start, t.obs], with final region [t.obs,∞). The
default is 200000.

n.iter.2 The number of iterations used for the final run with subregions defined according
to the results from the initial run. If n.iter.2 = 0, then only the initial run is
performed. The default is 1000000.

n.region.1 The number of subregions used by SAMC in the initial run. The default is 101.

n.region.2 The number of subregions used by SAMC in the final run. The default is 301.

prop.change The proportion of data to be updated by fun.proposal in each iteration. The
default is 0.05.

gain.factor.t0
This is used for defining the gain factor sequence. The default is 1000.

fun.test.statistic
A function written by the user to calculate and return the test statistic based on
data.input. It has the following format: fun.test.statistic(data.input,
...). See the example function t.test.statistic.

fun.proposal A function written by the user to update the input data and return the updated
data. It should be in the following format: fun.proposal(data.input,
prop.change, ...). See the example function proposal.permute.vector.

... Other arguments for fun.test.statistic and/or fun.proposal

6 SAMC.adapt

Value

A list with two components hist.mat and p.value. The object hist.mat will be a data
frame of dimension n.region.2 by 4 (or n.region.1 by 4 if n.iter.2 = 0), which contains
information used for checking convergence. The other component of each sublist is p.value,
which is the estimated p-value. The samplefreq column of hist.mat provides the number of
times the SAMC iterations generate a sample falling into each individual sub-region. A barplot of
samplefreq (barplot(hist.mat[, "samplefreq"]) should show a flat pattern.

Author(s)

Kai Yu

References

Yu K, Liang F, Ciampa J, Chatterjee N. Efficient p-value evaluation for resampling-based tests
(Submitted manuscript).

See Also

t.test.statistic, proposal.permute.vector, SAMC.fun

Examples

Example 1: An example of two-sample t test.
Suppose we do not know the theoretical distribution of t test statistic,
but instead want to rely on a permutation procedure to evaluate the significance
level for a given observed statistic value. In this permutation procedure, we
randomly shuffle the group IDs among the two samples and generate new versions of
the data. We can apply the SAMC algorithm to estimate the p-value (tail probability)
at a much reduced number of iterations than the standard permutation procedure.
First, we need to define the two functions for running SAMC, fun.test.statistic,
and fun.proposal. In the SPERT package, we provide such two functions. They are
t.test.statistic, which calculates the two sided t-test statistic, and
proposal.permute.vector, which update the data through permutation.

set.seed(1)
x<-rnorm(200, mean=0, sd=1)
y<-rnorm(200, mean=0.5, sd=1)
data.input<-list(x=x, y=y)
t.obs<-t.test.statistic(data.input)

True p-value
p.true <- 2.0*(1-pt(t.obs, df=398))
p.true

Run SAMC to estimate the p-value
res<-SAMC.adapt(data.input, t.obs, t.start=0, n.iter.1=5000,

n.iter.2=10000, n.region.1=101, n.region.2=201,
prop.change=0.05, gain.factor.t0=1000,
fun.test.statistic=t.test.statistic, fun.proposal=proposal.permute.vector)

The estimated p-value
res$p.value

To check for convergence:
barplot(res$hist.mat[, "samplefreq"])

SAMC.fun 7

Note that the barplot is not flat, so the algorithm has not converged yet.
To get a more precise estimate run the code below.
WARNING: the following call to SAMC.adapt could take around 20 minutes to run.
ptm <- proc.time()
#res<-SAMC.adapt(data.input, t.obs, t.start=0, n.iter.1=200000,
n.iter.2=1000000, n.region.1=101, n.region.2=301,
prop.change=0.05, gain.factor.t0=1000,
fun.test.statistic=t.test.statistic, fun.proposal=proposal.permute.vector)
proc.time()-ptm

SAMC.fun SAMC algorithm

Description

This function is to run the SAMC algorithm with user defined subregion definition.

Usage

SAMC.fun(data.input, n.iter, partition.vec, prop.change, theta.start,
gain.factor.t0, fun.test.statistic, fun.proposal, ...)

Arguments

data.input The input data, which can be any data object, e.g. data frame, list, etc., as long as
it is compatible with the two user provided functions fun.test.statistic
and fun.proposal.

n.iter The number of iterations
partition.vec

A vector of length m of cut points at the domain of the test statistic. The first sub-
region is defined as [partition.vec[1], partition.vec[2]], the sec-
ond subregion is [partition.vec[2], partition.vec[3]], ..., with fi-
nal subregion being [partition.vec[m],∞). Usually partition.vec[1]
is the minimum value of the test statistic (e.g. 0), and partition.vec[m]
can be set as the observed test statistic whose p-value is to be estimated.

prop.change The percentage of data to be updated by fun.proposal in each iteration.

theta.start theta.start
gain.factor.t0

This is used for defining the gain factor sequence.
fun.test.statistic

A function written by the user to calculate and return the test statistic based on
data.input. It has the following format: fun.test.statistic(data.input,
...). See the example function t.test.statistic.

fun.proposal A function written by the user to update the input data and return the updated
data. It should be in the following format: fun.proposal(data.input,
prop.change, ...). See the example function proposal.permute.vector.

... Other arguments for fun.test.statistic and/or fun.proposal

8 t.test.statistic

Details

This function estimates the tail probability

P (�(x) ≥ partition.vec[m])

Value

A list with two components hist.mat and p.value (see SAMC.adapt).

Author(s)

Kai Yu

References

Yu K, Liang F, Ciampa J, Chatterjee N. Efficient p-value evaluation for resampling-based tests
(Submitted manuscript).

See Also

SAMC.adapt, t.test.statistic, proposal.permute.vector

t.test.statistic Calculate a 2 sample t-test statistic

Description

A function to calculate a 2 sample t-test statistic which can be used as an example function for the
fun.test.statistic argument of the SAMC.adapt function.

Usage

t.test.statistic(data.input)

Arguments

data.input A list of two components, x and y, which are vectors containing measurements
from one of the two samples.

Value

The value of the test statistic

See Also

proposal.permute.vector

Examples

t.test.statistic

Index

∗Topic htest
SAMC.adapt, 4
SAMC.fun, 6

∗Topic package
EXPERT, 1

EXPERT, 1

MAX.test.statistic, 2, 3

proposal.permute.matrix, 2, 2
proposal.permute.vector, 3, 5, 7, 8

SAMC.adapt, 1, 3, 4, 4, 7
SAMC.fun, 5, 6

t.test.statistic, 4, 5, 7, 7

9

	EXPERT
	MAX.test.statistic
	proposal.permute.matrix
	proposal.permute.vector
	SAMC.adapt
	SAMC.fun
	t.test.statistic
	Index

