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Abstract

This report describes an R package, called the Individualized Coherent Absolute Risk
Estimation (iCARE) tool, which allows researchers to quickly build models for absolute
risk, and apply them to estimate an individual’s risk of developing disease during a spec-
ified time interval, based on a set of user defined input parameters. An attractive feature
of the software is that it gives users flexibility to update models rapidly based on new
knowledge of risk factors and tailor models to different populations. The tool requires
three input arguments be specified: (1) a model for relative risk (2) an age-specific dis-
ease incidence rate and (3) the distribution of risk factors for the population of interest.
The tool handles missing risk factor information for individuals for whom risks are to be
predicted using a coherent approach where all estimates are derived from a single model
after appropriate model averaging. The software allows single nucleotide polymorphisms
(SNPs) to be incorporated into the model using published odds ratios and allele frequen-
cies. We discuss the statistical framework, handling of missing data and genetic factors,
and provide real data examples that demonstrate the utility of iCARE for building and
applying absolute risk models, using breast cancer as an example.
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1. Introduction

Absolute risk models estimate disease risk in an upcoming time interval based on known
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risk factors for healthy individuals in a population, accounting for the presence of competing
outcomes, such as death from other causes (Gail et al. 1989). Absolute risk models for cancers
and other diseases have important clinical and public health applications. Assessment of
absolute risk of disease is fundamental for developing health intervention strategies to optimize
an individual’s risks and benefits. For example, absolute risk models can be used to identify
individuals who have a high risk of disease in order to target screening and disease prevention
strategies (Jackson 2000; Jackson et al. 2005; Pharoah et al. 2008; Gail 2011). Decisions
regarding the initiation of screening or preventative intervention are often made on the basis
of age and family history (fh), as proxies for risk. However, there is increasing consensus in the
medical community that these decisions should instead be guided directly by individualized
estimates of risk, which can be obtained from absolute risk models that include a wider
array of environmental and genetic risk factors. Assessment of the distribution of risks for
individuals in the population allows public health researchers to weigh the risks and benefits
of a given intervention, such as a screening regimen, for the entire population (Grundy 1999;
Gail 2001; Murray et al. 2003). Absolute risk models can also be applied to assess the power
of clinical trials by projecting the expected distribution of disease risk from the distribution
of risk factors in a population (Gail 2011). At an individual level, absolute risk estimates can
be used to counsel individuals on the basis of their personal risk.

As large-scale epidemiologic studies continue to discover new risk factors for many diseases,
there is a growing demand to develop and apply models for absolute risk prediction that
can facilitate translation of our understanding of etiology into tools for managing health at
the clinical and public health levels. There currently does not exist general software for
researchers to build, update, and apply absolute risk models in R, and the Individualized
Coherent Absolute Risk Estimation (iCARE) package provides this much needed capability.

The iCARE package fits absolute risk models by synthesizing multiple data sources containing
information on relative risks, the distribution of risk factors in the population, and age-specific
incidence rates for the disease of interest and rates of competing risks. This compartmentaliza-
tion allows researchers to incorporate the best available information on key model parameters,
to easily update models as new information becomes available, and to tailor or extend models
to particular populations. Releasing iCARE will reduce that start up time for researchers,
help standardize the methodology, and make it easy to share absolute risk models and make
associated analyses reproducible. The package also implements methods for handling missing
data, which is likely to be an issue in practice, and gives special attention to the efficient
incorporation of genetic factors based solely on published information.

2. iCARE Methodology: Synthesizing Data Sources

Here, we present the statistical framework underlying the iCARE package. We describe the
data inputs that are required to use the tool, examples of appropriate sources for the data,
and details regarding how the key inputs are used to estimate model parameters. Specifically,
we explain the methodology used to estimate the baseline hazard function component of the
model and the approach used to handle missing data in the risk factor profiles used in the
estimation of individuals’ risks. We describe the tool’s special treatment of SNPs, which
allows genetic information to be incorporated into the model based on published information.



2.1. Model

The iCARE package fits a model for absolute risk, which assumes the age-specific incidence
rates of the disease given a set of risk factors, Z, follows the Cox proportional hazard (PH)
model (Cox 1972) of the form

pr(T € [t,t + AT > t,Z) = Mo(t|Z) = No(t) exp(T Z),

where T represents the event time of diagnosis for the disease of interest. The model assumes
that risk factors Z act in a multiplicative fashion on the baseline hazard function, \g(t). Given
this model, the absolute risk of the disease for an individual who is currently at age a over
the time internal a 4+ 7 is defined as (Gail et al. 1989),

/anrT Xo(t) exp(B Z)exp <_ /at [)\o(u) exp(8"2) + m(u)] du) . W

Formula (1) accounts for competing risks due to mortality from other causes through the
age-specific mortality rate function m(¢). In the current implementation, for simplicity it
is assumed that risk of mortality does not depend on the risk factor Z, but the method in
principle can be extended to relax this assumption if covariate-specific risks of competing
mortality can be estimated from external sources or models.

2.2. Data and Estimation

In order to fit the above model and apply it for absolute risk estimation, users must provide
three main data sources:

e a model for the relative risk (or hazard ratio) parameters: (3
e a marginal age-specific disease incidence rate: Ay, ()

e a dataset containing risk factors for a set of representative individuals that could be
used to estimate the risk factor distribution for the underlying population: Z; for j =
1, ..., Nyey

In order to account for competing risks, an optional input with age-specific incidence rates of
all-cause mortality, ideally excluding the disease of interest, m(t) should also be provided.

The iCARE tool computes absolute risk estimates as the sum of the integrand of (1) over
integer ages in the time interval of interest. The user-provided hazard ratio parameter esti-
mates, B , are plugged into the equation directly to carry out the computation. There are a
number of ways that these input parameters may be obtained. For example, the estimates
,5’ may be derived from the analysis of a prospective cohort study using a multivariate PH
model. Alternatively, they may be obtained from the analysis of a case-control study using
a multivariate logistic regression model adjusted for fine categories of age, the parameters of
which have been shown to approximate the PH model (Prentice et al. 1978). Ideally, datasets
used to estimate model parameters should include information on all risk factors of interest
and be large enough to provide precise estimates. When this is not available, estimates of
relative risk for different risk factors could be obtained from multiple data sources (e.g. large



published studies or meta-analyses). It is important that the provided estimates account for
possible confounding (i.e. are adjusted for other risk factors in the model), and interactions.

The second data source needed for the model is an estimate of the overall (or marginal)
age-specific disease incidence rate, defined as

pr(T € [t,t + At)|T > t) = A(t),

for the population of interest. This information, for example, could be available from population-
based registries, such as the United States’ Surveillance Epidemiology and End Results
(SEER) cancer registry maintained by the National Cancer Institute (Howlader et al. 2011).
Similarly, users that wish to account for competing risks must provide the optional marginal
age-specific incidence rates of all-cause mortality excluding the disease of interest

pr(M € [t,t + At)|M > t) = m(t).

In general it is best to incorporate rates defined for fine age categories, such as 1- or 5-year
age strata, however iCARE can accommodate information on coarser age strata as well. For
estimation, the age-specific disease incidence rates A, (t) are used in combination with the
third data input, a dataset of risk factors that is representative of the population of interest,
to estimate the baseline hazard function, Ao(t).

2.3. Estimating the Baseline Hazard Function

Given the model of relative risks, B , and marginal age-specific disease incidence rates, 5\m (1),
we use the following relationship to derive the baseline hazard rate

Am(t) = Xo()E [exp(ﬁTZ|T > t)} = Ao() /exp(ﬁTz)pr(z\T > t)dz, (2)
where, under the proportional hazard model,

pr(z|T > t) = eXP(_tfo Xo(w)exp(BT z)du)
Jexp {— Iy )\O(U)exp(ﬁTz)du} dF(z)

with F(Z) denoting the distribution of the risk factors in the underlying population. If the
disease can be assumed to be rare, then (2) can be approximated in closed form as

(1) = / Mo(t) exp(872)dF (2).

Computationally, the iCARE implementation starts with an initial value for A\o(¢) based
on the rare disease approximation and iterates based on formula (2) to obtain more exact
estimates. This approach is closely related to an alternative formula for estimation of Ag(t)
described by Gail et al. (1989). That approach involved an alternative maneuvering of the
formula to allow estimation based on the risk factor distribution from a random sample of
cases. In contrast, our estimation method relies on an available distribution of the risk factors
for a general population. Thus, a model based on our proposed method (as implemented by
iCARE) can be easily updated to reflect the risk factor distribution for different populations
without requiring access to a sample of cases from each population of interest.



2.4. Specification of risk factor distribution

As detailed in Section 2.3, the risk factor distribution F'(Z) plays a key role in calibrating
the model to the marginal disease rates in the underlying population. Thus, to carry out the
calibration, the user must provide individual level data on the model risk factors for a sample
that is representative of the underlying population. Ideally, this representative dataset would
simply be the empirical distribution of Z, from a national survey, an epidemiologic study
such as a population-based cohort, or controls from a population-based case-control study
sampled from the population of interest. When empirical data are available, there are no
additional modeling assumptions needed. However, if complete empirical data in all risk
factors is not available, users can instead provide a representative dataset that may have
been simulated under modeling assumptions appropriate to the population of interest. For
example, in the application illustrated later we develop a model for absolute risk of breast
cancer and incorporate a representative dataset of risk factors Z which were simulated based
on data from a combination of national surveys.

2.5. Handling Missing Data in Covariate Profile

In addition to providing the three data inputs for estimating model parameters, users must
provide information on risk factors for the individuals to whom the model should be ap-
plied. When there is complete information for all risk factors of interest, risk estimation is
as straightforward as plugging the individuals Z into formula (1). However, in practice there
may be missing data on some of the risk factors for individuals for whom we want to produce
risk estimates.

One way to handle missing data on risk factors for a given individual is to use multiple
imputation procedures (Rubin 2008). The user would obtain estimates of absolute risk using
iCARE for each of the completed-by-imputation risk factor profiles for the individual, and
then average the absolute risk estimates to obtain an overall estimate of the absolute risk for
that individual.

The iCARE tool also provides an internal option for handling missing data in the covariate
profile for prediction: model-free imputation based on the referent representative dataset of
risk factors provided by the user. The methodology underlying this imputation is as follows.
For any subject indexed by i with a covariate profile Z;, we define the risk score R; = 517,
the linear predictor associated with the user specified log relative risk model. If a subject has
missing values in some of the covariates, we partition R; = R{p + R}», where P indexes the
observed pattern of missing data (i.e. which covariates are observed and which are missing)
and where Rp = 6;’3TZiOP and Rip = B]%TZ}‘P denote the corresponding “observable” and
“unobservable” components of the risk score. In general, this partitioning depends on which
columns of the design matrix of the original model can be specified by the observed set of
covariates for a given individual’s risk factor profile. Given this partitioning, the absolute
risk, AR, of the individual 7 is defined by

AR(Rip) = ZAR(RQ‘JPJ"?P)PT(??P\R?P) = E[AR(R{p, rip)| Rip]. 3)
Tip

The absolute risk for the ¢-th individual is obtained by averaging over possible values for
the unobserved component of the risk score given the value of the observed component of



the risk score. As all the risk scores are scalar quantities, one can estimate the conditional
distributions pr(r}p|R?p) in a non-parametric fashion using the user-specified referent dataset.

In particular, to carry out (3) for a given covariate profile with missing data, the method finds
subjects in the reference dataset that are similar on the basis of the observable component
of the risk score, R{p, and take as the risk estimate the average of the full model risk,
AR(R%,r}), for the referent subjects identified to be similar. Specifically, the observable
risk scores R?p are obtained for j = 1,..IN in the referent dataset, categorized into single
percentile strata, and the individual’s Ry is matched to one of the strata. The reported risk
for the individual is then computed by averaging over the values of the full AR(R%,r}) for
all referent subjects in this matching stratum. This method can be viewed as a type of “hot
deck” imputation based on the risk score, which is popular in survey literature.

2.6. Special treatment of SNP markers

As large genome-wide association studies continue to discover low penetrant, common SNPs
associated with risk of complex chronic diseases, it is important to investigate the utility
of the SNPs, in combination with other risk factors, for public health strategies of disease
prevention. Evaluation of absolute risk, as opposed to relative risk, which is typically used
for summarizing associations, is fundamental for these public health applications. Due to
the importance of SNP markers in absolute risk models and natural assumptions specific to
genetic data, the iCARE package provides a number of options for incorporating SNPs into
the model.

Users can include individual SNPs in the model, or include a polygenic risk score (PRS), in
the same way as any other risk factor as long as all input components can be identified. This
allows researchers to specify interactions between SNPs and other risk factors in the model or
to include PRSs with more complex weighting structures if desired. However, to include SNPs
this way, a referent dataset must be provided that has the individual SNPs (or the PRSs) for
all subjects. Again, researchers may create this referent distribution by creating a simulated
dataset of individuals who are representative of the underlying population if necessary.

Alternatively, the iCARE package also provides a special approach for handling independent
SNPs, which requires that the user only provide information on the odds ratio 6 and popu-
lation allele frequency fj for each SNP to be included. iCARE internally creates a PRS from
all provided SNPs weighted by the odds ratios,

PRS; = log(04)Gh,
k

where G}, denotes the SNP genotype status of individuals, coded as the number of non-referent
alleles they carry (with respect to the referent allele for which the odds ratios are reported).

In general, iCARE assumes this PRS to be distributed independently of all other covariates.
However, if a family history variable is included in the model, then the method allows a simple
adjustment for the expected correlation between PRS and family history. The adjustment
method assumes the latter is coded as a binary indicator of the presence or the absence of
disease among first-degree relatives. In particular, when the model risk factors include family
history, iCARE provides the option to adjust the log odds ratio associated with family history



using the formula

Bitn = Brn — 0.5 2{log(6k)}* x 2fi(1 = fi)
k

with 6, denoting the disease odds ratio of the SNPs, unadjusted for family history. This
adjustment reflects the fact that, with the addition of SNPs into the model, the effect of family
history is attenuated by a magnitude that is proportional to the degree of heritability explained
by the SNPs. This treatment should be applied only when the provided Sgj represents the
effect of a binary variable for first-degree family history, unadjusted for the SNPs.

Users may provide relative risk estimates for family history that are already adjusted for the
SNPs in the model, and if so they should simply not select the option for the family history
adjustment.

One important way in which this approach treats SNPs differently involves the referent dataset
of risk factors. Recall that this dataset might come from a national survey; however, a national
survey is unlikely to have genotyped individuals, particularly for the exact set of SNPs to be
included in the model. Recognizing this, for user convenience the referent dataset need only
include non-genetic risk factors and iCARE will simulate SNP genotype values based on the
provided allele frequencies for the population. SNPs are multiply imputed with user-specified
n.imps determining the number of imputations for each subject in the referent dataset. The
method assumes that the SNPs are independent and that the genotype distributions follow
Hardy-Weinberg Equilibrium. Specifically, the joint distribution of SNP genotypes and other
risk factors (X) are assumed to follow the decomposition

pr(gla v ’gkvX) = pr(gl’ v 7gk|fh) X pI‘(X)

If family history of the disease is included in the model as a binary risk factor indicating the
presence or absence of any first-degree relative with disease history, assuming that the disease
is rare, we approximate

pr(gi,....gx|fh =0) ~pr(gi,...,g5) = pr(g1) X ... x pr(gx).

The distribution of SNP genotypes among subjects with family history is approximated as

pr(g1,. .., gkl fh =1) = pr(gi|fh =1) x ... x pr(g|fh = 1), where

(90.5
o = 1) =

The above approximation is derived under the assumption of rare disease and multiplicative
effect of SNPs on the risk of the disease. If family history is not indicated to be in the model,
and is thus not provided for each referent dataset subject, we impute the SNPs based on the
unconditional distribution for independent SNPs in Hardy-Weinberg equilibrium.

It is possible that SNP information may also be missing in the covariate profiles for whom
the model will be applied to estimate risk. In this case, SNPs are treated the same as all
other risk factors and handled according to the methodology given in Section 2.5. Again, this
approach is equivalent to averaging over the possible values of the missing SNPs according to
the population distribution, taking advantage of any known SNPs in the genotype profile.



3. Using the iCARE package

In this section, we demonstrate how to use iCARE to build and apply two absolute risk models
for breast cancer: one with SNPs only, and one with risk factors and SNPs.

The main function in iCARE is compute.absolute.risk. The input arguments to this
function are named with the prefix “model.” or “apply.” according to whether they are used
primarily for model building or application respectively.

To begin, the R package and the example dataset breast_cancer should be loaded:

R> library("iCare")
R> data("breast_cancer", package="iCare")

Example 1: SNP-only Model

To specify a SNP-only model, we must input the marginal age-specific disease incidence
rates of breast cancer and the SNP information matrix, snp.info, that has three columns
named: snp.name, snp.odds.ratio, and snp.freq. Marginal age-specific incidence rates of
competing risks are optional, and in this example we include them.

R> bc_15_snps <- breast_cancer$bc_15_snps

R> bc_inc <- breast_cancer$bc_inc

R> mort_inc <- breast_cancer$mort_inc

Here, bc_15_snps contains published information on 15 SNPs identified to be associated
with breast cancer risk by a recent genome-wide association study (Michailidou et al. 2015).
bc_inc contains age-specific incidence rates of breast cancer from SEER, and mort_inc has
age-specific incidence rates of all-cause mortality from the WONDER mortality database
(National Center for Health Statistics 2014). In fitting a SNP-only model, the referent dataset
need not be provided as iCARE will impute the referent SNP distribution. The function call
below builds an absolute risk model based on 15 SNPs for breast cancer and applies the model
to estimate risk of breast cancer in the interval from age 50 to age 80:

R> res_snps_miss = compute.absolute.risk(model.snp.info = bc_15_snps,
model .disease.incidence.rates = bc_inc,
model.competing.incidence.rates = mort_inc,
apply.age.start = 50,
apply.age.interval.length = 30

return.refs.risk = T )

Note, for this SNP-only model, we exercised the option of not providing any new profiles
for estimation (i.e. no apply.snp.profile input). In this case, iCARE simulates N=10,000
SNP profiles internally for the referent dataset and reports as the risk estimate the average
of the risks estimated from the profiles: 0.09583. We can access the estimated risks for the
(simulated) referent profiles and obtain summary information by calling

R> summary(res_snps_miss$refs.risk),

which yields the following output:



Risk_Estimate

Min. :0.07474
1st Qu.:0.09196
Median :0.09573
Mean :0.09583
3rd Qu.:0.09957
Max. :0.12008

From this, we learn that on average women of age 50 have a 9.6% chance of being diagnosed
with breast cancer before age 80, and that the 15-SNP model stratifies breast cancer risk from
a minimum risk of 7.5% to a maximum risk of 12.0% in the interval 50-80.

If we wished to predict breast cancer risk for three specific women whom we had genotyped,
we might call

R> new_snp_prof <- breast_cancer$new_snp_prof

R> res_snps_dat <- compute.absolute.risk(model.snp.info = bc_15_snps,
model.disease.incidence.rates = bc_inc,
model.competing.incidence.rates = mort_inc,

apply.age.start = 50,
apply.age.interval.length = 30,
apply.snp.profile = new_snp_prof,

return.refs.risk = T )

Now our output res_snps_dat$risk contains the risk estimates for the three women whose
genotype profiles we provided. Additionally, res_snps_dat$refs.risk contains the risk
estimates for the referent dataset (again N=10,000 simulated internally) because we requested
that those risks also be reported. These results allow us to create a useful plot, like Figure
1, showing the distribution of risks in our referent dataset and to add the risks of the three
women to see where they fall on the population distribution, with the code

R> plot(density(res_snps_dat$refs.risk), xlab="Absolute Risk of Breast Cancer",
main="Referent SNP-only Risk Distribution: Ages 50-80")
R> abline(v=res_snps_dat$risk, col="red")

R> legend("topright", legend="New Profiles", col="red", lwd=1)

Note, in this example the first genotype profile was missing two SNP values, demonstrating
iCARE’s ability to produce risk estimates when there is missing data in the profile, with no
inconvenience to the user.

FExample 2: Breast Cancer Risk Model with Risk Factors and SNPs

The process of building and applying a breast cancer risk model with risk factors and SNPs
follows much the same approach as in the SNP-only model in Example 1, however we must



Figure 1: Estimated Risk for Three Women on Population Distribution of Risk in 50-80
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specify a few additional arguments.

vl
v2

list(); vi$name = "famhist"; vi$type = "continuous"

list(); v2%name = "parity"; v2$type = "factor" ; v28levels = c¢(0,1,2,3,4)
bc_model_cov_info <- list(vl, v2)
bc_model_log _or  <- breast_cancer$bc_model_log_or

ref_cov_dat <- breast_cancer$ref_cov_dat
Having prepared the data sources, we can now run

R> res_covs_snps$details = compute.absolute.risk(
model.formula = caco ~ famhist + as.factor(parity),
model.cov.info = bc_model_cov_info,
model.snp.info = bc_15_snps,

model.log.RR = bc_model_log_or,

model.ref.dataset = ref_cov_dat,
model.disease.incidence.rates = bc_inc,
model.competing.incidence.rates = mort_inc,
model.bin.fh.name = "famhist",

apply.age.start = 50,
apply.age.interval.length = 30,
apply.cov.profile = new_cov_prof,
apply.snp.profile = new_snp_prof,
return.refs.risk = T )
With the exception of model.bin.fh.name, which is always optional, all arguments listed in

green should either be included or excluded in the function call as a set. This is to say that
if one is included, then all should be included.



This fits an absolute risk model with risk factors family history and parity (i.e. number of
children) additively with the 15 SNPs associated with breast cancer. In a model that includes
risk factors, such as this one, we must supply the model formula, the risk factor information,
the log odds ratios for the risk factors, and a referent dataset of risk factors to build the
model. The model.cov.info input tells the function that family history can be treated as
a continuous variable (though it only has levels 0 and 1) and that parity should be treated
as a factor variables with levels 0,1,2,3, and 4 indicating the number of children for a given
subject. Here, the bc_model.log.or input contains the log odds ratios for family history and
parity, from a logistic regression model adjusted for cohort and fine categories of age in the
Breast and Prostate Cancer Cohort Consortium (Campa et al. 2011; Joshi et al. 2014). The
ref_cov_dat dataset was created by simulation from the National Health Interview Survey
(NHIS) and the National Health and Nutrition Examination Survey (NHANES), which are
representative of the US population. We indicate model.bin.fh.name = "famhist" to allow
the software to properly attenuate the log odds ratio for family history to account for the
addition of the 15 SNPs.

In addition to summarizing and plotting the risk estimates, iCARE includes an option to view
more detailed output, by calling

R> print(res_covs_snps$details),

which reports the interval start and end ages over which absolute risk was computed, the
entire covariate profile to which the model was applied (SNPs and risk factors if applicable),
and the resulting risk estimate.

Int_Start Int_End  Risk Est 1rs12405132 1rs12048493 1rs72755295  rs6796502
P1 50 80 0.09434 NA NA 0 0
P2 50 80 0.08072 0 0 1 0
P3 50 80 0.07232 2 0 0 0
... 1513162653 rs2012709 rs7707921  1rs9257408  1s4593472 1rs13365225 rs13267382
P1 0 2 1 1 0 0 1
P2 1 1 2 1 1 1 1
P3 1 1 0 0 1 0 0
«. 1811627032  chri7i20230520p 18745570 186507583 famhist parity
P1 2 1 0 0 0.00 2.00
P2 1 0 0 0 0.00 4.00
P3 1 1 1 0 0.00 2.00

In this case, both the profiles P1 and P3 had the same levels of the risk factors family history
and parity, however we estimate that P1 has a 9.4% chance of breast cancer in the age interval
50 to 80, which is higher than P3’s chance of 7.2%, due to the fact that the two have very
different genotype profiles. This detailed output is also helpful for visually reminding users
of whether they had any missing data in the covariate profiles used for estimation.

Additional Options

iCARE provides several advanced options as well. For example, model.ref .dataset.weights
allows the user to optionally specify a vector of weights for each row in the referent dataset.



Whenever any averaging is performed over the referent dataset, such as in the case of missing
covariates for prediction, a weighted average is applied using the provided sampling weights.
Additionally, iCARE allows the time intervals over which risk is to be computed to differ
for each subject; this flexibility is useful, for example, in estimating 5-year risks for healthy
individuals starting from their current ages.

Using the compute.absolute.risk.split.interval function a user can also specify that
the absolute risk interval be computed in two parts, using two different sets of parameters.
This allows the proportional hazards assumption to be relaxed to some extent, by allowing
the relationship between risk factors and the outcome to vary over time. For example, it is
well documented that the relationships between certain risk factors, such as body mass index,
and breast cancer are different among premenopausal and postmenopausal women. Using
compute.absolute.risk.split.interval, users can specify a different set of relationships
by inputting model.log.odds.ratio and model.log.odds.ratio.2 for use prior to and after
a cutpoint of age 50, the median age at menopause. This more advanced function is also
helpful in the context where the distribution of risk factors varies with age.

In addition to returning risk estimates for the specified profiles, the iCARE functions can
optionally return the absolute risks for the referent dataset as well if return.refs.risk=T.
The relative risk scores, or 3T Z;, for the covariate profiles can be obtained by requesting
return.lp=T. For individuals where there is missing data in covariate profile Z, the reported
linear predictor is the average of the full linear predictors of all referent subjects in the
matching strata according to the approach described in Section 2.5.

4. Conclusion

The iCARE package is a new tool for building and applying absolute risk models by synthe-
sizing data sources on key model parameters. The tool standardizes methodology and gives
researchers the ability to easily update and share absolute risk models, and to evaluate the
public health implications of etiologic findings by translating relative risks onto the absolute
risk scale. The package incorporates calibration to population-based age-specific disease rates
and handling of missing data by leveraging a referent dataset of risk factors for the popula-
tion of interest. Through this handling of missing data and the ability to incorporate SNP
information based on published estimates, the tool gives researchers the ability to easily han-
dle analytic issues that are likely to arise in practice when building absolute risk models for
health contexts. In this paper we have described the methodology underlying this new tool
and illustrated its use with examples by building absolute risk models for breast cancer.
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