REBET (subREgion-based BurdEn Test)

July 9, 2018

Introduction

There is an increasing focus to investigate the association between rare variants
and common complex diseases in the hope of explaining the missing heritabil-
ity that remains unexplained from genome-wide association studies (GWAS) of
common variants. Recent studies have reported that rare variants contribute to
the genetic susceptibility for a number of complex traits or diseases, including
human adult height, lipid levels, autism, ischemic stroke, prostate cancer and
breast cancer. Detecting rare variant associations is statistically challenging,
stemming from two characteristics of rare variants: low frequency and hetero-
geneous risk effects. The power of detecting a single rare variant would be very
low unless the sample size and/or effect size is extremely large. Thus it has been
proposed to aggregating rare variants in a gene or genomic region to boost the
power, but this can also negatively affect power due to the problem of hetero-
geneous effects. To take these heterogeneous effects into account, burden tests
have been considered which reweight the effects of rare variants based on their
frequencies. While these tests have robust power for detecting a susceptibility
region containing clusters of causal variants, they do not readily identify which
variants, or class of them, in a gene contribute most to the association.

The subREgion-based BurdEn Test (REBET) simultaneously detects the
rare variant association of a gene and identifies the most susceptible sub-regions
that drive the gene-level significant association. In order to apply REBET,
biologically meaningful sub-regions within a gene need to be specified. The rare
variants within each sub-region may share common biologic characteristics, such
as functional domain or functional impact. REBET then searches all possible
combinations of sub-regions, identifies the one with the strongest association
signal through linear burden test, and assesses its statistical significance while
adjusting for multiple tests involved in the sub-region search. For detecting
overall association for a gene, REBET has robust power when risk effects are
relatively homogeneous within sub-regions, but potentially heterogeneous across
sub-regions.

> library (REBET)

Example

Get the paths to the data files.

> genofile <- system.file("sampleData", "geno_impute.txt.gz", package="REBET")
> subfile <- system.file("sampleData", "subjects.txt.gz", package="REBET")
> phenofile <- system.file("sampleData", "pheno.txt.gz", package="REBET")

Read in the phenotype data containing the response, covariates, and subject
ids.

> data <- read.table(phenofile, header=1, sep="\t")
> datal1:5,]

Subject Response Age Gender
11.911188 66 FEMALE
9.540571 59 FEMALE
9.346940 50 FEMALE
12.164063 71 FEMALE
10.495913 51 MALE

O W N
O W N

Our model will be adjusted for age and gender. Let us add a dummy variable
for gender.

> data[, "MALE"] <- as.numeric(datal[, "Gender'"] J,inj, "MALE")

For out analysis, we are only interested in the four sub-regions of chromosome
7 defined below.

> subRegions <- rbind(c (87654800, 87661050),

+ c(87661051, 87668870),
+ c (87668871, 87671945),
+ c (87671946, 87673200))

> subRegions

[,1] [,2]
[1,] 87654800 87661050
[2,] 87661051 87668870
[3,] 87668871 87671945
[4,] 87671946 87673200

We will use the minimum and maximum positions when the genotype data
is read.

> min.loc <- min(subRegions)
> max.loc <- max(subRegions)

We also need the subject order for the genotype data. These ids are in the
file subfile. Let us read in the genotype subject ids.

> geno.subs <- scan(subfile, what="character")

The set and order of subjects may not be the same in the phenotype and
genotype data. We need the common set of subject and the correct order.

> tmp <- datal[, "Subject"] 7inj, geno.subs
> data <- data[tmp,]
> order <- match(datal[, "Subject"], geno.subs)

The genotype data is in a file created from the IMPUTE2 software. Each row
of this file has the form: Snpid RSid Position A1 A2 P1,P1,P13P2,P2,P23...
where Al, A2 are the alleles and Pj; = P(al/al), Pjs = P(al/a2),Pjs =
P(a2/a2) for the jth subject. We do not know how many variants are in the file
and do not know how many variants are in the sub-regions defined above, but
we know it should not be more than 100. So we will read in the file row by row
instead of attempting to read in the entire file at once. We will initialize some
objects to store the necessary information we need from the genotype file. The
matrix G will store the expected dosages for the variants we want. The vectors
snps and locs will store the variant names and positions.

> upper.n <- 100

> G <- matrix(data=NA, nrow=nrow(data), ncol=upper.n)
> snps <- rep("", upper.n)

> locs <- rep(NA, upper.n)

Before the genotype file is read we need some vectors that will pick off the
probability of each genotype for each subject.

> id1 <- seq(from=1, to=3*length(geno.subs), by=3)
> id2 <- id1 + 1
> id3 <- id1 + 2

Now we are ready to open the genotype file and read it row by row. In the
code below, we are only going to store the variants that are between the min.loc
and max.loc defined above. For such variants, we compute the expected dosage
for each subject as Pjo + 2 x Pjs, which make allele a2 the effect allele. Note
that we must check for missing genotypes - if all three probabilities are 0, then
the expected dosage is NA (not 0!).

> index <- 0

> fid <- gzfile(genofile, "r")

> while(1) {

+ vec <- scan(fid, what="character", sep=" ", quiet=TRUE, nlines=1)

if (!length(vec)) break

snp <- vec[2]

loc <- as.numeric(vec[3])

if ((loc >= min.loc) & (loc <= max.loc)) {
geno.probs <- as.numeric(vec[-(1:5)])
probs1 <- geno.probs[id1]
probs2 <- geno.probs[id2]
probs3 <- geno.probs[id3]
dosage <- probs2 + 2*probs3

Check for missing genotypes

tmp <- (probsl == 0) & (probs2 == 0) & (probs3 == 0)
tmp[is.na(tmp)] <- TRUE

if (any(tmp)) dosagel[tmp] <- NA

index <- index + 1
G[, index] <- dosagel[order]
snps[index] <- snp

+ + + + + ++F+F+ A+ FE A+

+ locs[index] <- loc
+)

+ F

> close(fid)

Subset the objects G, snps, and locs by the number of variants we stored,
which is the number index.

> G <- G[, 1:index, drop=FALSE]
> snps <- snps[1:index]

> locs <- locs[1:index]

> colnames(G) <- snps

The rebet function requires a vector of sub-region names for the variants
in matrix G. The sub-region names will be SR1-SR4 and will be stored in the
vector E.

> E <- rep("", index)
> for (i in 1:nrow(subRegions)) {
+ tmp <- (locs >= subRegions[i, 1]) & (locs <= subRegions[i, 2])
+ tmpl[is.na(tmp)] <- FALSE
+ if (any(tmp)) E[tmp] <- paste("SR", i, sep="")
+ 7}
Define the response vector, matrix of covariates, and call the rebet function.
> Y <- as.numeric(datal[, "Response"])
> X <- as.matrix(datal, c("Age", "MALE")])
> ret <- rebet(Y, G, E, X=X)

The result summary shows that sub-region SR3 is highly significant.

> print (h.summary (ret))

$Meta
SNP Pvalue OR CI.low CI.high
1 Gene 0.0001554158 43.915 6.186 311.755

$Subset.1sided
SNP Pvalue OR CI.low CI.high Pheno
1 Gene 5.434698e-08 532447.2 4590.188 61762179 Region_SR3

$Subset.2sided
SNP Pvalue Pvalue.1 Pvalue.2 OR.1 CI.low.1 CI.high.1 OR.2
1 Gene 4.336478e-07 4.224093e-08 0.5527489 532447.2 4771.827 59411208 0.401
CI.low.2 CI.high.2 Pheno.1 Pheno.2
1 0.02 8.199 Region_SR3 Region_SR2

