Risk Predictions from Lung Cancer Models

Description
The R package provides individual risks of lung cancer and lung cancer death based on various published papers: Bach et al., 2003; Spitz et al., 2007; Cassidy et al., 2008 (LLP); Hoggart et al., 2012; Tammemagi et al., 2013 (PLCoM2012); Marcus et al., 2015 (LLPi); Wilson and Weisfeld, 2015 (Pittsburgh); Katki et al., 2016 (LCRAT, LCDRAT, and versions constrained to a few predictive variables); Katki et al., 2018. This package also estimates the Life Years Gained From Screening-CT (LYFS-CT) as per Cheung et al., 2019. It requires the same variables as LCDRAT plus 12 additional comorbidities and the year of patient assessment.

Usage
\texttt{lcmodels(x)}

Arguments
\texttt{x} A data frame or matrix containing individuals' covariate values. Columns 22-33 are needed only to estimate life gained from undergoing CT screening. Covariates should be in the following columns and numerical formats:

- column 1 - current age (numeric);
- column 2 - gender (1=Female, 0=Male);
- column 3 - years smoked (numeric);
- column 4 - years quit (numeric with 0 to indicate current smoker);
- column 5 - cigarettes per day (numeric);
- column 6 - race (0=Non-hispanic white, 1=Non-hispanic Black/African American, 2=Hispanic, 3=Other Ethnicity);
- column 7 - lung disease (1=COPD or Emphysema, 0=No COPD or Emphysema);
- column 8 - number of first degree relatives with lung cancer (0,1,2);
- column 9 - bmi;
- column 10 - highest education level (1=<12 grade, 2=HS graduate, 3=post hs, no college, 4=associate degree/some college, 5=bachelors degree, 6=graduate school);
- column 11 - asbestos exposure (1=Yes,0=No);
- column 12 - prior history of pneumonia (1=Yes,0=No);
- column 13 - prior history of cancer (1=Yes,0=No);
- column 14 - family history of lung cancer (0=none, 1=early onset, 2=late onset);
- column 15 - Dust exposure (1=Yes,0=No);
- column 16 - 2 or more first degree relatives with cancer (binary indicator);
- column 17 - 1 or more first degree relatives with smoking cancer (binary indicator);
- column 18 - no hay fever (1=No Hay Fever,0=Yes Hay Fever);
- column 19 - asian ethnicity (1=Yes,0=No);
- column 20 - islander ethnicity (1=Yes,0=No));
- column 21 - American indian ethnicity (1=Yes,0=No);
- column 22 - Hypertension (1=Yes,0=No);
- column 23 - Coronary Heart Disease (1=Yes,0=No);
- column 24 - Angina pectoris (1=Yes,0=No);
- column 25 - Heart Attack (1=Yes,0=No);
- column 26 - Other heart disease (1=Yes,0=No);
- column 27 - Stroke (1=Yes,0=No);
- column 28 - Diabetes (1=Yes,0=No);
- column 29 - Chronic bronchitis in past year (1=Yes,0=No);
- column 30 - Weak/failing kidneys in past year (1=Yes,0=No);
- column 31 - Liver condition in past year (1=Yes,0=No);
- column 32 - Health problem requiring special equipment (1=Yes,0=No);
- column 33 - Year of assessment.

Risk factors used by each model

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Bach</th>
<th>Spitz</th>
<th>LLP</th>
<th>Hoggart</th>
<th>PLCo2012</th>
<th>Pittsburgh</th>
<th>LLPi</th>
<th>LCRAT</th>
<th>constrainedLCRAT</th>
<th>constrainedLCDRAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Yes</td>
</tr>
<tr>
<td>Gender</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Asian</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Pacific islander</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>American Indian</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Education</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>BMI</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Smoking status</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Years/Age quit</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Years smoked</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cigs per day</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Pack-years</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Prior cancer</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Lung disease</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Hayfever</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Asbestos exposure</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Dust exposure</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Any FDR w/ cancer</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Any FDR w/ smoking-related cancer</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Any FDR w/ LC</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Num. FDR w/ LC</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Early onset FDR w/ LC</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Value

A numeric matrix containing individuals’ predictions:

- column 1 - An indicator variable for whether the individual is eligible for CT lung screening according to US Preventive Services Task Force (USPSTF) recommendations.
- column 2 - This is the probability of dying from lung cancer within 5 years if not undergoing screening (LCRAT from Katki, 2016).
- column 3 - This is the reduction in the probability of dying from lung cancer in 5 years
- column 4 - This is the probability of being diagnosed with lung cancer within 5 years if not undergoing screening (LCRAT from Katki, 2016).
- column 5 - This is the extra probability of lung cancer diagnosis in 5 years if undergoing 3 yearly CT lung screens as in the NLST (Katki, 2016).
- column 6 - This is the probability of having at least one false-positive CT screen out of 3 screens (Katki, 2016).
- column 7 - This is the expected number of false-positive CT screens after 3 screens (Katki, 2016).
- column This is the probability of being diagnosed with lung cancer within 10 years if not undergoing screening (Bach, 2003).
- column 9 - This is the probability of being diagnosed with lung cancer within 1 years if not undergoing screening (Hoggart, 2012).
- column 10 - This is the probability of being diagnosed with lung cancer within 5 years if not undergoing screening (LLP, 2008).
- column 11 - This is the probability of being diagnosed with lung cancer within 8.7 years if not undergoing screening (LLPi, 2015).
- column 12 - This is the probability of being diagnosed with lung cancer within 1 years if not undergoing screening (Spitz, 2007).
- column 13 - This is the probability of being diagnosed with lung cancer within 6 years if not undergoing screening (PLCOm2012 from Tammemagi, 2013).
- column 14 - This is the probability of being diagnosed with lung cancer within 6 years if not undergoing screening (Pittsburgh, 2015).
- column 15 - This is the probability of dying from lung cancer within 5 years if not undergoing screening (constrained LCDRAT).
- column 16 - This is the probability of being diagnosed with lung cancer within 5 years if not undergoing screening (constrained LCRAT).
- column 17 - Days of life gained from undergoing 3 rounds of CT screening (LYFS-CT from Cheung, 2019).
- column 18 - Life expectancy without CT screening.
- column 19 - Life expectancy with CT screening.
- column 20 - Years of life gained if lung cancer is found early due to screening.
- column 21 - Years of life gained if lung cancer death is averted due to screening

Warning

VGAM and survey are required dependency of this package. VGAM and survey may automatically be installed the first time this package is used. Inputs must be in numerical format to ensure correct output. For data frame x, this can be checked using sapply(x,class)

Author(s)

Li C. Cheung, li.cheung@nih.gov, Stephanie A. Kovalchik, Hormuzd A. Katki

References

Examples
age <- c(66, 58, 75, 72, 56)
bmi <- c(23, 28, 26, 27, 24)
cpd <- c(36, 36, 40, 24, 40)
emp <- c(0, 1, 1, 0, 1)
fam.lung.trend <- c(0, 2, 0, 2, 0)
female <- c(0, 1, 0, 1, 0)
smkyears <- c(43, 37, 45, 42, 29)
qtyears <- c(0, 0, 9, 6, 6)
race <- c(0, 1, 2, 2, 3)
edu6 <- c(3, 5, 4, 5, 5)
asb <- c(0, 0, 0, 0, 0)
pneu <- c(0, 0, 0, 0, 0)
prior.cancer <- c(0, 0, 0, 0, 0)
fam.cancer.onset <- c(0, 1, 0, 2, 0)
dust <- c(0, 0, 0, 0, 0)
fam.cancer <- c(0, 1, 0, 1, 0)
fam.smoke.cancer <- c(0, 1, 0, 1, 0)
no.hayfever <- c(1, 1, 1, 1, 1)
asian <- c(0, 0, 0, 0, 0)
islander <- c(0, 0, 0, 0, 0)
indian <- c(0, 0, 0, 0, 0)
hypertension <- c(0, 0, 1, 0, 1)
chd <- c(0, 0, 0, 0, 0)
angina <- c(0, 0, 0, 0, 0)
heartattack <- c(0, 0, 0, 0, 0)
heartdisease <- c(0, 0, 0, 0, 0)
stroke <- c(0, 0, 0, 0, 0)
diab <- c(0, 0, 0, 0, 0)
bron <- c(0, 1, 0, 0, 0)
kidney <- c(0, 0, 0, 0, 0)
liver <- c(0, 0, 0, 0, 0)
speceq <- c(0, 1, 0, 0, 0)
year <- rep(2019, 5)

persons <- data.frame(age,
female,
smkyears,
qtyears,
cpd,
race,
emp,
fam.lung.trend,
bmi,
edu6,
asb,
pneu,
prior.cancer,
fam.cancer.onset,
dust,
fam.cancer,
fam.smoke.cancer,
no.hayfever,
asian,
islander,
indian,
hypertension,
chd,
angina,
heartattack,
heartdisease,
stroke,
diab,
bron,
kidney,
liver,
speceq,
year)

persons_predictions <- lcmodels(persons)