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1 Definition

Letting m (1, . . . ,M) index the number of failure types, the absolute risk of experiencing the
mth event within the time interval [t0, t1) in the presence of M − 1 competing events is

πm(t0, t1; ~x) =

[
M∏
i=1

Si(t0; ~xi)

]−1 ∫ t1

t0

λm(u; ~xm)
M∏
i=1

Si(u; ~xi)du. (1)

where ~x = (~x1, . . . , ~xM ) is a set of cause-specific covariate vectors, Sm(u;xm) = exp(−
∫ u
0 λm(v; ~xm)dv)

and λm(u; ~xm) are the cause-specific survival and hazard functions given covariates ~xm. We assume
that covariates in (1) remain fixed at their values at the beginning of the projection interval, t0.
For simplicity, the subscript in πm, which emphasizes that the absolute risk pertains to a particular
cause, will be omitted from here on.

The formulation of absolute risk given in Equation (1) can accomodate many possible haz-
ard models. In the coxph.risk implementation, the hazard model for each cause follows Cox’s
proportional hazards model,

λm(t; ~xm) = λ0m(t) exp(β′m~xm) (2)

where λ0m(t) denotes the baseline hazard function at time t.

2 Estimation

Consider a cohort of i = 1, . . . , n individuals. Let δmi (t) be an indicator function for the ith
individual and mth event at time t, and let ymi (t) indicate the at-risk status at time t mth event
at time t, taking the value one when the ith individual experiences an event or is censored at t or
later. The estimating equations for β′m (1, . . . ,M) are

~U(βm) =
n∑
i=1

δmi (ti){~xmi − ~̄H(βm, ti)} (3)

where ~̄H(βm, t) is an ‘average’ of the risk profiles ~xm among the individuals still at-risk at time t,

~̄H(βm, t) =

∑n
i=1 y

m
i (t) exp(β′m~x

m
i )~xmi∑n

i=1 y
m
i (t) exp(β′m~x

m
i )

. (4)

Standard optimization algorithms can be used to obtain the solution β̂m to the estimating equations
in (3).

When no distributional assumption is made for λ0m, the estimator for the cause-specific risk of
the primary event within the interval [t0, t1), given ~x, is

π̂(t0, t1; ~x) =

[
M∏
i=1

Ŝ0i(t0)
exp(

ˆβ
′
i~x

i)

]−1
exp(β̂

′
1~x

1)
∑

t0≤u<t1

λ̂01(u)
M∏
i=1

Ŝ0i(u)exp(
ˆβ
′
i~x

i), (5)
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where Ŝ0i(u) is the cause-specific baseline survival function and λ̂01(u) the primary-event baseline
hazard function at time u. A semiparametric weighted Nelson-Aalen estimator (Aalen 1978) for
the cause-specific baseline hazard function is

λ̂0m(t) =

∑n
i=1 y

m
i (t)δmi (t)∑n

i=1 y
m
i (t) exp(β̂

′
m~x

m
i )
, (6)

which uses Breslow’s method for handling ties (Breslow 1974). The cause-specific baseline survival
at time t is estimated as

Ŝ0m(t) = exp(−
∑
um≤t

λ̂0m(umi )), (7)

with umi denoting the observed event times for the mth event type.
For both the piecewise and semiparametric approaches, given a baseline survival estimate, the

survival to time t for an individual with risk profile ~xm is

Ŝm(t; ~xm) = Ŝ0m(t)exp(
ˆβ
′
m~x

m). (8)

3 Variance

Denote the Nm ordered observed event times occuring within [t0, t1) for the mth cause as
um1 < um2 < · · · < umNm . In terms of these event times, Equation (1) becomes

π̂(t0, t1; ~x) = exp(β̂
′
1~x

1)
N1∑
i=1

λ̂01(u
1
i )

M∏
j=1

(
Ŝ0j(u

1
i )/Ŝ0j(u

1
1)
)exp( ˆβ′

j~x
j)

=
N1∑
i=1

π̂(u1i ). (9)

with π̂(u1i ) = exp(β̂
′
1~x

1)λ̂01(u
1
i )
∏M
j=1

(
Ŝ0j(u

1
i )/Ŝ0j(u

1
1)
)exp( ˆβ′

j~x
j)

.

We determine the derivative and deviates for each component of (9). For the β̂j , the derivate
is

∂π̂(t0, t1; ~x)

∂β̂j
= ~xj

[
π̂(t0, t1; ~x) + exp(β̂

′
j~x
j)

N1∑
i=1

log
(
Ŝ0j(u

1
i )/Ŝ0j(u

1
1)
)
π̂(u1i )

]
,

when j = 1 and

∂π̂(t0, t1; ~x)

∂β̂j
= ~xj exp(β̂

′
j~x
j)

N1∑
i=1

log
(
Ŝ0j(u

1
i )/Ŝ0j(u

1
1)
)
π̂(u1i )

for competing causes. The Taylor deviates for each β̂m are

∆i{β̂m} = H(β̂m)−1
n∑
j=1

δmj (ti){~xmj − ~̄H(β̂m, tj)}. (10)

The derivatives for the baseline hazard components are

∂π̂(t0, t1; ~x)

∂λ̂01(u1i )
= λ̂01(u

1
i )
−1π̂(u1i ). (11)
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The Taylor deviates for the baseline hazard of cause m at observed event time t are

∆i{λ̂0m(t)} =
∂λ̂0m(t)

∂Nm(t)
∆i{Nm(t)}+

∂λ̂0m(t)

∂Gm(t)
∆i{Gm(t)}, (12)

where

Nm(t) =
n∑
i=1

ymi (t)δmi (t)

and

Gm(t) =

n∑
i=1

ymi (t) exp(β̂
′
m~x

m
i ).

In terms of these quantities, the Taylor deviates are

∆i{λ̂0m(t)} = Gm(t)−1(ymi (t)δmi (t)− λ̂0m(t)∆i{Gm(t)}) (13)

with

∆i{Gm(t)} = ymi (t) exp(β̂
′
m~x

m
i )

+
[∑n

j=1 ~xjy
m
j (t) exp(β̂

′
m~x

m
j )
]

∆i{β̂m}.

The final components are the survival functions. The derivatives for each Ŝ0m(u1j ) are

∂π̂(t0, t1; ~x)

∂Ŝ0m(u1j )
= sgn(m) exp(β̂

′
m~x

m)Ŝ0m(u1j )
−1π̂(u1j ) (14)

where sgn(1) = −1 and is one otherwise. Given the semiparametric estimate,

Ŝ0m(t) = exp(−
∑
umi ≤t

λ̂0m(umi )), (15)

the Taylor deviates for the baseline survival up to time u1j for the mth risk type are

∆i{Ŝ0m(u1j )} = −Ŝ0m(u1j )
∑

umn ≤u1j

∆i{λ̂0m(umn )}. (16)

Combining these results, the expression for the Taylor deviates of π̂(t0, t1; ~x) are

∆i{π̂(t0, t1; ~x)} =
∑M

m=1
π̂(t0,t1;~x)

∂
ˆβm

∆i{β̂m}+
∑N1

j=1
π̂(t0,t1;~x)

∂λ̂01(u1j )
∆i{λ̂01(u1l )}

+
∑N1

j=1

∑M
m=1

π̂(t0,t1;~x)

∂Ŝ0m(u1j )
∆i{Ŝ0m(u1j )}.
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