Package ‘TREAT’

March 24, 2014
Title TREe-based Association Test
Version 0.0.4
Date 2014-03-11
Author Kai Yu, Han Zhang

Description A fast and powerful tree-based association test for
detecting complex joint effects in case-control studies

Maintainer Bill Wheeler <wheelerb@imsweb.com>
Depends snpStats
License GPL-2

Archs x64

R topics documented:

TREAT . . . e 1
rEAL e e e e e e e e e e e 2
treat.plink L L 4
Index 7
TREAT TREe-based Association Test
Description

A fast and powerful tree-based association test for detecting complex joint effects in case-control
studies

treat

Details

Multivariate tests derived from the logistic regression model are widely used to assess the joint effect
of multiple predictors on a disease outcome in case-control studies. These tests become less optimal
if the joint effect cannot be adequately approximated by the additive model. The tree structure
model is an attractive alternative as it is more apt to capture non-additive effects. However, the
tree model is most commonly used for prediction, seldom for hypothesis testing, mainly due to the
computational burden associated with the resampling-based procedure required for estimating the
significance level. The main function t reat includes a fast algorithm for building the tree structure
model, and a robust testing procedure that incorporates an adaptive model selection procedure to
identify the optimal tree model representing the joint effect. The function t reat .plink allows
the user to process multiple genes when the genotype data is in the PLINK binary format. This
package also includes 2 gene data bases to automatically retieve the SNPs belonging to particular
gene names.

Author(s)

Han Zhang <han.zhang2 @nih.gov> and Kai Yu <yuka@mail.nih.gov>

References

Zhang H, Wheeler W, Wang Z, Taylor P, Yu K. A fast and powerful tree-based test for detecting
complex joint effects in case-control studies. Submitted.

treat TREe-based Association Test

Description

A fast and powerful tree-based association test for detecting complex joint effects in case-control
studies

Usage

treat (formula, data, snp.vars, op=NULL)

Arguments
formula A formula describing the response and covariates. The response must be
binary. If the response is not 0-1, then it will be recoded to 0-1 and a warning
will be printed. The covariates must be categorical variables. If no covariates,
use a formula similar to "Y ~ 1".
data A data frame containing the response, covariates and SNPs.
snp.vars Vector of column names and/or numbers for the SNPs. These variables must be

coded as 0-1-2. If NULL, then all 0-1-2 variables in data that are not in the
formula will be used as the SNP variables.

op A list of options (see details). The default value is NULL.

treat 3

Details

Missing values: Any row of data containing a missing value for the response, covariates or any
SNP will be removed from the analysis.

Options list:
Below are the names for the options list op. All names have default values if they are not specified.

* backward <TRUE or FALSE> If TRUE, then the p-value is computed with backward search-
ing as well. The default is TRUE.

e cut.point <Integer Vector> NULL or a vector of cut points. If NULL, then it is set to
2:nleaf. The default is NULL.

* nleaf <Integer> The maximum number of leaves in a tree. The default is 5.

* nperm <Integer> Number of permutation steps for computing the p-value. The default is
10000.

* seed <Integer> Seed for random number generation. If negative, the program will use the
system time as the seed. The default is O.

* thr.grp.sample <Integer> The lower limit of the sample size of each category defined
by the covariates in a node to be split. The default is 2.

e thr.leaf.size <Integer> The minimum sample size for a leaf node in the tree. The
default is 20.

* thr.sample <Integer> The minimum sample size for a node to be split. If the sample size
in a node is less than thr . sample, the node will not be split. The default is 50.

* max.missRate <Number between 0 and 1> The maximum missing rate for each SNP. Any
SNP with missing rate > max .missRate will be removed from the analysis. The default is
0.2.

Value
The returned value is a list with names:

* adj.pval The p-value of the TREE test, multiple-comparison adjusted.
* unadj.pval Vector of p-values at each cut-point, calculated from the tree.

* comment Status of the TREE test. It equals "done" if the estimated p-value is sufficiently
accurate. It equals "refine" if the estimated p-value needs to be refined by more permutations.

* adj.pval.back The p-value of the TREE test with backward searching, multiple-comparison
adjusted.

* unadj.pval.back Vector of p-values at each cut-point, calculated from the backward
searching tree.

* comment .back Status of the TREE test with backward searching.

* tree.model. forward Data frame containing details of the built tree, including how the
node is split and which indicator is used as the splitting rule. If the condition in the column
"rule" holds, then the sample is assigned to "child1(TRUE)" otherwise the sample is assigned
to "child2(FALSE)".

* tree.model.backward Details of the built tree with backward searching, including how
the node is split and merged, and which indicator is used as the splitting rule.

* snps Final set of SNPs that were included in the analysis
* rm.snps.coding SNPs that were removed due to coding errors

* rm.snps.missRate SNPs the exceeded the maximum missing rate

4 treat.plink

Author(s)
Han Zhang and Kai Yu

See Also

treat.plink

Examples

set.seed(123)

Create data

v <- c(rep(0, 1000), rep(l, 1000))

covar <- sample(0:2, 2000, replace=TRUE, prob=rep(1l/3,3))

SNPs <- matrix(rbinom(2000%x10, 2, c(.36, .48, .16)), nrow=2000)
SNPs <- as.data.frame (SNPs)

colnames (SNPs) <- paste("rs", 1:10, sep="")

data <- data.frame(y, covar, SNPs)

tr <- treat(y~factor(covar), data=data, snp.vars=colnames (SNPs))

tr$adj.pval
tr$tree.model.forward

treat.plink TREe-based Association Test

Description

The tree-based association test used with PLINK files

Usage

treat.plink (plink.files, formula, data, id.vars, gene.obj, op=NULL)

Arguments

plink.files A character vector of the .bed, .bim and .fam files in this order.

formula See treat.
data A data frame containing the response, id variables and covariates.
id.vars Character vector of length 2 which gives the family id and subject id

in this order.

gene.obj Vector of gene names or a matrix with at least 3 columns called "Chr", "Start",
"Stop" which give the chromosome, starting location and ending location for
each gene to analyze. This matrix can also have a column called "Gene".

op A list of options (see details below and the options in t reat). The default value
is NULL.

treat.plink 5

Details

Options list:
Below are the names for the options list op. All names have default values if they are not specified.

* out.dir The output directory to save an R object file for each gene analyzed. The default is
the working directory getwd .

* gene.db "hgl8", "hgl9" or a gene database file of a particular format. The format must be
an R object file containing a single matrix or data frame with columns "Chr", "Start", "Stop",
and "Gene". This option is only used when gene . ob j is a vector of gene names. The default
is "hgl18".

¢ delta Integer number of base-pairs to subtract/add to a gene’s starting/ending locations. For
example, if a gene had starting/ending locations of a and b, then all SNPs with with location

[a-delta, a+delta] will beincluded in the gene. The default is 20000.

Value

The returned object is a list containing a summary and a character vector saved. files of the
output files created. Each output file is an R object file in directory op$out .dir with name
<gene>.rda containing the returned object from treat.

Author(s)
Han Zhang and Kai Yu

See Also

treat

Examples

Get the data

bed <- system.file("sampleData", "data.bed", package="TREAT")
bim <- system.file("sampleData", "data.bim", package="TREAT")
fam <- system.file("sampleData", "data.fam", package="TREAT")

Create a data frame with the id variables, response and covariates
x <- read.table(fam, header=0, stringsAsFactors=FALSE)
colnames (x) <- c("FAMILY", "SUBJECT", "FATHER", "MOTHER", "SEX", "Y")

Create the gene object

gene.obj <- rbind(c(8, 12799052, 12895289, "Genel"),
c(8, 12868315, 12989321, "Gene2"))

colnames (gene.obj) <- c("Chr", "Start", "Stop", "Gene")

formula <- as.formula (Y ~ SEX)
id.vars <- c("FAMILY", "SUBJECT")

Specify options.

The example data shown here has small sample size

We modify the options to illustrate more details of the output
op <- list (thr.sample = 10, thr.leaf.size = 5)

tr <- treat.plink(c(bed, bim, fam), formula, x, id.vars, gene.obj, op=op)
tr

treat.plink

the path of the created output files
tr$saved.files

load the output for Genel, which is an R object named "obj"
load(tr$saved.files["Genel"])

obj$Sadj.pval
obj$tree.model.forward

Index

*Topic model
treat, 2
treat.plink,4

+Topic package
TREAT, 1

formula, 2
getwd, 5
TREAT, 1

treat,2,2,4, 5
treat.plink,2,4,4

	TREAT
	treat
	treat.plink
	Index

