ReadMe.fil
07/19/17

Version 4.1
Documentation and user guide for SAS macro to project for absolute risk based on
the relative risk models for (whites, hispanic, other), asian-american, or african-american. 1-AR, composite breast cancer incidences, competing hazards handling of missing covariate values and covariate editing procedures follow NCI BrCa Risk Assessment Tool (NCI BCRAT Ver4).

In this release of the SAS macro, in addition to the abs risk projection for the
women with under investigation, for each women, an associated race specific abs risk projection for an "average" women is also provided. This quantity is included to follow the NCI Breast Cancer Risk Assessment Tool which provides an "avg" women risk projection as well.

Life time risk for a women can be obtained by setting her "projection age" to 90.

A simple 3 step example program (BCRAM_example.sas) on the use of the SAS macro
(Br)east (Ca)ncer (R)isk (A)ssessment (M)acro -- BrCa_RAM.

Step 1: the included sas program BCRAM_example.sas reads the supplied data file "Sample.in", which contains the Gail BrCa risk covarites and projection age interval for 26 hypothetical women. It then saves a temporary SAS system file with name of "ExampleIn" to be used as input to the SAS
macro BrCa_RAM:
data ExampleIn; *** name of the sas system file which
the macro parameter
macro invocation;
infile 'Sample.in' firstobs=9; *** "Sample.in" is the
RR covariate input file
first 8 header

```
file "Sample.in";
    *** SAS variable names;
        input IDD
    InitalAge
```


ProjtnAge

NBiop
HP
AgeMenarchy
AgeFstLive
Num_Rels
Ethnicity;
run;

Step 2: sas program BCRAM_example.sas runs the SAS macro BrCa_RAM:
\%include "BrCa_RAM"; *** include the sas MACRO
BrCa_RAM;

Involking the sas macro BrCa_RAM to perform the BrCa projections.
The temporary sas input file is set to "ExampleIn". The temporary sas output file is set to "ExampleOut".

The macro parameters WID, T1, T2, N_Biop, HyperPlasia, AgeMen, Age1st, N _Rels, and Race point to their corresponding sas variables on the sas file "ExampleIn", namely IDD, InitalAge, ProjtnAge, NBiop, HP, AgeMenarchy, AgeFstLive, Num_Rels and Ethnicity respectively.

The macro parameter AbsRsk points to the sas variable Abs_Risk which will be added to the output sas file "ExampleOut". The output sas file will also contain all the variables on the input sas file.

	Macro parameter	pointing to	SAS file name or \%BrCa_RAM (In_File Out_File
WID	SAS variable name;		

RR_Star1	$=$	RR_Star1
RR_Star2	$=$	RR_Star2
AbsRsk	$=$	Absolute_Risk);

RR_Star1	8.4
RR_Star2	8.4
Absolute_Risk	$10.4 ;$

run;

Detailed description of the operation and output items from the SAS macro BrCa_RAM:

Input data:

In_File= should "point" to a SAS data set containing all the required input data items needed to perform risk projections, such as initial age, projection age, BrCa
relative risk covariates and race. See the paragraph "Input data items ... " below,
for a detailed description of all required data items.

Output data:
Out_File= should "point" to a SAS output data set which will contain the projected absolute risk of BrCa as well as the original input data items.

Macro structure:

	Macro name	Macro parameters		"points" to SAS names
\%macro	BrCa_RAM	(In_File	=,	name of input sas data set
		Out_File	$=$,	name of output sas data set
		WID	$=$,	ID \# 1,2,3 ... postive
integers				
beginning of		T1	=,	initial age, age at
				projection
interval				
		T2	$=$,	projection age, age at end
of				projection
interval				
		N_Biop	=,	\# biopsies performed
		HyperPlasia		did biopsy exhibit atypical
hyperplasia?		AgeMen	$=$,	age at menarchy

	Age1st N_Rels	$\begin{aligned} & =1 \\ & =, \end{aligned}$
brca		
	Race CharRace	$\begin{aligned} & =, \\ & =, \end{aligned}$
race		
	$\begin{aligned} & \text { RR_Star1 } \\ & \text { RR_Star2 } \end{aligned}$	$\begin{aligned} & =, \\ & =, \end{aligned}$
$\operatorname{brca}(\%)$		
appropriate sas file/sas variable names must be associated with all macro parameters on the invocation of the sas macro "BrCa_RAM".		
For example by coding "In_File = AARPin" tells the macro that the user created sas file "AARPin" is to be used for input of variables. Similarly coding "N_Biop = Num_Biops", lets the macro know that the sas variable "Num_Biops" in the		
sas input file "AARPin" contiains the count of the \# of biopsies performed.		
To involke the sas macro in your sas program, an \%include statement must be coded in your sas program, which points to the sas macro "BrCa_RAM".		
For example:		
```the statement: %include "BrCa_RAM"; BrCa_RAM```		
directory		
the statement: \%include "c:\sas.macro BrCa_RAM		
Input data items needed to project for BrCa absolute risk and consistency requirements:		
Macro		
parameter	ion	
WID	r each wom	
T1	(	
T2	ojection a	
> T1		
CONSTRAINT on T1 and T2: $20<=$ T1 < T2 <= 90		



1
1

2

AgeMen: age at menarchy 0

1
2

Age1st: age at 1st live birth 0

1
2
3

N_Rels: \# 1st degree rel with BrCa 0 or 99 0

1
2

2,3,4 ... and not 99

14,15,16 ... 99
12,13
11 and younger

19 and younger or 99
$20,21,22,23,24$
$25,26,27,28,29$ or $98=($ nulliparous $)$
$30,31,32 \ldots$ and not 98 and not 99

1
$2,3,4 \ldots$ and not 99

Consistency patterns for \# of Biopsies and Hyperplasia:
Requirment: (A) N_Biops $=0$ or 99 then Hyperplasia MUST $=99$ (not applicable)
(B) N_Biops > 0 and < 99 then Hyperplasia $=0$, 1 or 99 (unk)
if ANY of the above 2 REQUIREMENTS are violated, the absolute risk will be set to the sas missing value ".". The consequences to the relative risk (RR) for the above two requirements is:
(A) \# biopsies $=0$ or 99 \& Hyperplasia $=99$ (not applicable) inflates RR by 1.00
(B) \# biopsies $>0$ and $<99$ \& Hyperplasia $=0$ ( no hyprplasia) inflates RR by 0.93 $=1$ (yes hyprplasia) inflates RR
by 1.82 =99 (unk hyprplasia) inflates RR by 1.00

Edit checking for remaining relative risk covariates, AgeMen, Age1st and N_Rels:

AgeMen: age at menarchy must be postive integer less than equal to initial age T1

NOTE For African-American women AgeMen <= 11 are grouped with AgeMen = 12 or 13

Age1st: age at 1st live birth must be postive integer greater than equal to AgeMen and less than or equal to Initial age T1

NOTE For African-American women Age1st is not included in the RR model and all values for this variable are recoded to 0

N_Rels: \# of 1st degree relatives with BrCa must be 0,1,2...

Following is a listing of the sample raw input data set "Sample.in" (column heading included for clarity):

IDD	T1	T2	$\begin{aligned} & \text { Num } \\ & \text { Biop } \end{aligned}$	$\begin{aligned} & \text { Hyp } \\ & \text { Plas } \end{aligned}$	Age   Men	Age   1st	Num   Rel	Race
1	45.2	53.3	99	99	10	20	1	$\bigcirc$
2	45.2	53.3	99	1	10	20	1	1
3	45.2	53.3	99	0	10	20	1	2
4	45.2	53.3	0	99	10	20	1	3
5	45.2	53.3	1	99	10	20	1	4
6	45.2	53.3	1	99	14	19	1	5
7	45.2	53.3	99	99	99	19	1	6
8	45.2	53.3	1	1	14	19	1	7
9	45.2	53.3	99	1	14	99	1	8
10	45.2	53.3	1	$\bigcirc$	14	19	1	9
11	45.2	53.3	99	$\bigcirc$	99	99	1	10
12	45.2	53.3	0	0	14	19	1	11
13	45.2	53.3	0	99	10	20	1	12
14	45.2	53.3	0	1	10	20	1	$\bigcirc$
15	45.2	53.3	0	0	10	20	1	1
16	45.2	53.3	1	$\bigcirc$	10	20	1	2
17	35.0	40.0	4	99	11	25	0	3
18	35.0	40.0	4	99	11	98	0	4
19	35.0	40.0	4	99	11	10	0	5
20	35.0	40.0	4	99	36	25	0	6
21	27.0	90.0	99	99	13	22	0	7
22	27.0	90.0	99	99	13	22	99	8
23	18.0	26.0	99	99	13	22	99	9
24	27.0	26.0	99	99	13	22	99	10
25	85.0	91.0	99	99	13	22	99	11
26	86.0	90.0	99	99	13	22	99	12

After the absolute risks have been generated, descriptive statistics by applying PROC
MEANS to the quantities Error_Ind, AbsRsk, RR_Star1 and RR_Star2 is
performed. When the
mean and standard deviation for the variable "Error_Ind" is 0, implies that no errors
have not been found. Otherwise when the mean and std for "Error_Ind" is not 0, implies
that errors have been found. When errors are found, the \# of records with errors is
the count asscociated with "AbsRsk" listed under NMiss (\# of missing). Furthermore, a
listing file for erroronious records follows the PROC Means output. For example:

BrCa_RAM, sas macro to project for BrCa absolute risk September 15, 2010
Quick check for errornous records on input file
IF MEAN OF 'Error_Ind' EQUALS 0, ERROR FREE. ERROR LISTING BELOW WILL BE EMPTY.
IF MEAN OF 'Error_Ind' IS NOT 0, ERRORS EXISTS. CHECK ERROR LISTING BELOW.
(\# of records with errors is the \# listed under the NMiss column in the 'AbsRsk' line)

N
Variable Label Mean Std Dev N Miss

Error_Ind	If mean not 0, implies ERROR in file	0.57692
0.5038326	0	
Absolute_Risk	Abs risk(\%) of BrCa in age interval [T1,T2)	3.76766
2.5784411	15	
RR_Star1	Relative risk age lt 50	3.43948
1.9232113	13	
RR_Star2	Relative risk age ge 50	2.86656
1.5484013	13	

Since NMiss=15 for Absolute Risk, we note that the error listing lists 15 records below:

Error listing for the input file

ID		\#	Hypr	Hypr	Age	Age	\#		RR	RR
Pat										
\# T1	T2	Biop	plas	RR	Men	1st	Rel	Race	Age<50	Age $>50$
AbsRsk(\%)	\#									


1	$\begin{gathered} 45.2 \\ 29 \end{gathered}$	53.3	99	99	1.00	10	20	1	0	.	.
	45.2	53.3	$\bigcirc$	99	1.00	2	1	1	??		
2	45.2	53.3	99	1	.	10	20	1	1	-	.
	45.2	53.3	A	A	A	2	1	1	Wh		
3	45.2	53.3	99	0	.	10	20	1	2	.	-
	45.2	53.3	A	A	A	1	0	1	AA		
9	45.2	53.3	99	1	.	14	99	1	8	.	.
	45.2	53.3	A	A	A	0	0	1	Fi		
11	45.2	53.3	99	0	.	99	99	1	10	.	.
	45.2	53.3	A	A	A	0	0	1	oP		
12	45.2	53.3	0	0	.	14	19	1	11	.	.
	45.2	53.3	A	A	A	0	0	1	OA		
13	$\begin{gathered} 45.2 \\ 29 \end{gathered}$	53.3	0	99	1.00	10	20	1	12	-	.
	45.2	53.3	0	99	1.00	2	1	1	??		
14	45.2	53.3	$\bigcirc$	1	.	10	20	1	0	.	.
	45.2	53.3	A	A	A	2	1	1	??		
15	45.2	53.3	0	0	.	10	20	1	1	-	.
	45.2	53.3	A	A	A	2	1	1	Wh		
19	35.0	40.0	4	99	1.00	11	10	0	5	.	.
	35.0	40.0	2	99	1.00	2	.	0	Wo		
20	35.0	40.0	4	99	1.00	36	25	0	6	.	.
	35.0	40.0	2	99	1.00	.	.	0	Ch		
23	18.0	26.0	99	99	1.00	13	22	99	9	.	.
	-	26.0	0	99	1.00	1	.	0	Hw		
24	$\begin{gathered} 27.0 \\ 16 \end{gathered}$	26.0	99	99	1.00	13	22	99	10	1.42	1.42
	.	-	0	99	1.00	1	1	0	oP		
25	$\begin{gathered} 85.0 \\ 16 \end{gathered}$	91.0	99	99	1.00	13	22	99	11	1.42	1.42
	85.0	.	0	99	1.00	1	1	0	oA		


26	86.0	90.0	99	99	1.00	13	22	99	12
16									
86.0	90.0	0	99	1.00	1	1	0	$? ?$	

For each of the records with error, the record is listed followed by a line which gives
some indication as to where the error occured. For example, the record with ID=2 has
an "A" listed under the 3 variables associated with Biopy i.e. N_Biop, Hyperplasia
and Hypr_RR. This means that ID=2 has violated consistency defined by Requirement
(A). Similarly for IDs 3,9,11,12,14 and 15 which display violations of Requirements (A). For IDs 19 and 20, violation of AgeMen and/or Age1st consistency
are seen. Note the SAS missing value "." listed under AgeMen and/or Age1st. For IDs 23, 24 and 25 violation of T1 and/or T2 consistency requirements are seen.
Again, note the "." listed under T1 and/or T2. This small sample data set "Sample.in"
in no way exhausts all the possible ways in which the data can be in error, but it should
give a guide and indication on how to check and correct errors when they do occur.

Finally, the listing from Step3:
Listing of the first 100 records in temporary output sas system file ExampleOut
Further analysis depending on the projected abs risk must be performed using the
output sas system file which is invoked by the sas macro parameter
'Out_File'

RR	Risk	AbsRi	\#	ypr	HP	Age	Age	\#		RR
	T1	T2	Biop	las	RR	Men	1st	Rel	Race	Age<50
Age>=50 (\%) AvgWm(\%)										
1	45.2	53.3	99	99	1.00	10	20	1	0=??	
2	45.2	53.3	99	1	.	10	20	1	1=Wh	.
3	45.2	53.3	99	0	.	10	20	1	$2=A A$	.
4	45.2	53.3	$\bigcirc$	99	1.00	10	20	1	$3=\mathrm{Hi}$	3.2354
3.2354	2.10		1.1313							
5	45.2	53.3	1	99	1.00	10	20	1	4=NA	5.4926
4.1180	4.44		1.7673							
6	45.2	53.3	1	99	1.00	14	19	1	5=Wo	4.4263
3.3185	3.97		1.7673							
	45.2	53.3	99	99	1.00	99	19	1	6=Ch	2.2075
2.2075	1.24		1.1644							


8	45.2	53.3	1	1	1.82	14	19	1	$7=\mathrm{Ja}$	6.9820
6.9820	5.77	57	1.7279							
9	45.2	53.3	99	1	.	14	99	1	8=Fi	.
10	45.2	53.3	1	0	0.93	14	19	1	9=Hw	3.5677
3.5677	3.90	1	2.2614							
11	45.2	53.3	99	0	.	99	99	1	$10=0 \mathrm{P}$	.
12	$45.2$	53.3	0	0	.	14	19	1	11=0A	.
13	45.2	53.3	0	99	1.00	10	20	1	$12=? ?$	.
14	$45.2$	53.3	0	1	.	10	20	1	$0=? ?$	.
15	45.2	53.3	0	0	.	10	20	1	1=Wh	.
16	45.2	53.3	1	0	0.93	10	20	1	$2=A A$	2.3458
2.0974	2.68	9	1.6479							
17	35.0	40.0	4	99	1.00	11	25	$\bigcirc$	$3=\mathrm{Hi}$	5.3860
3.0274	0.67	89	0.2183							
18	35.0	40.0	4	99	1.00	11	98	0	$4=N A$	5.3860
3.0274	1.02	30	0.2814							
19	35.0	40.0	4	99	1.00	11	10	0	5=Wo	.
- 20	$35.0$	40.0	4	99	1.00	36	25	0	$6=C h$	.
21	27.0	90.0	99	99	1.00	13	22	0	7=Ja	1.4210
1.4210	8.82	77	12.2076							
22	27.0	90.0	99	99	1.00	13	22	99	$8=F i$	1.4210
1.4210	6.76		9.4245							
23	18.0	26.0	99	99	1.00	13	22	99	$9=\mathrm{Hw}$	.
24	27.0	26.0	99	99	1.00	13	22	99	$10=0 \mathrm{P}$	1.4210
1.4210	.		.							
25	85.0	91.0	99	99	1.00	13	22	99	$11=0 \mathrm{~A}$	1.4210
1.4210	.		.							
26	86.0	90.0	99	99	1.00	13	22	99	12=??	.

Statistical issues should be directed to: Dr. Mitchell Gail gailm@exchange.nih.gov
Technical details should be directed to: Mr. David Pee djkento88@yahoo.com

