Mustapha Abubakar, M.D., Ph.D.
NCI Shady Grove | Room 7E228
Biography
Dr. Abubakar joined NCI as a postdoctoral fellow in the Integrative Tumor Epidemiology Branch (ITEB) in 2017, was promoted to a research fellow in 2020, and was appointed as an Earl Stadtman tenure-track investigator and selected for the NIH Distinguished Scholars Program in 2022. He earned his medical degree from Bayero University, Kano, Nigeria, and trained as a pathologist in the Department of Pathology, Aminu Kano Teaching Hospital, Nigeria. He obtained his M.Sc. in epidemiology from the Imperial College London and his Ph.D. in molecular epidemiology, with a concentration in computational pathology and epidemiology, from the University of London’s Institute of Cancer Research (ICR): Royal Cancer Hospital, London, United Kingdom. Dr. Abubakar has received numerous awards for his work, including the DCEG Fellows Award for Research Excellence, Intramural Research Award, Fellowship Achievement Award, and the AACR NextGen Star Award.
Research Interests
With the increasing uptake of population-based cancer screening programs around the world, the incidences of benign and precursor lesions on tissue biopsies performed for suspected breast, colorectal, prostate, or lung cancers are likely to continue to rise, underscoring the need for natural history studies into screening-detectable cancers. Accordingly, Dr. Abubakar’s integrative research program in computational pathoepidemiology is focused on advancing scientific understanding into the role of tissue ecosystem disruption in the etiology, natural history, tumor heterogeneity, and clinical outcomes of screening-detectable cancers. Underpinning his line of research is the notion that cellular (e.g., epithelial cells, myoepithelial cells, pericytes, fibroblasts, endothelial cells, immune cells, etc.) and non-cellular (e.g., collagens, proteoglycans, glycoproteins, etc.) tissue components exist in a dynamic equilibrium during normal homeostasis, and that progressive disruption of this equilibrium precedes tumor development, impacting risk, progression, and tumor behavior.
Dynamic Tissue Ecosystems in Cancer Etiology and Natural History
Histologic tissue disorganization represents a highly promising but poorly developed area of biomarker research, presumably due to the limited capacity for tissue characterization on microscopy. Recent advances in digital pathology and artificial intelligence (AI) i.e., computational pathology, have ushered unparalleled opportunities for high-throughput, standardized, and reproducible profiling of histological images to extract complex, multidimensional tissue organizational features on a scale that has never before been possible by using conventional microscopy. Dr. Abubakar’s research aims to: (i) leverage state-of-the-art computational pathology methods to characterize tissues as dynamic ecosystems and to uncover novel tissue disruption phenotypes in normal, precursor, and tumor tissues; (ii) elucidate the genetic, lifestyle, and environmental causes of tissue ecosystem disruption; and (iii) determine how disruptions in organ-specific tissue ecosystems lead to cancer, including tumor etiologic heterogeneity. To advance this line of inquiry, Dr. Abubakar is conducting tissue-based studies within several studies in DCEG with epidemiologically-annotated tissue collections, including the Ghana Breast Health Study (GBHS); Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO); Polish Breast Cancer Study (PBCS); Komen Tissue Bank (KTB); and the CONNECT for Cancer Prevention cohort. He is also participating in international consortia, such as the Breast Cancer Association Consortium, where he is leading computational pathoepidemiology studies that, together with his other ongoing studies, are aimed at advancing scientific understanding into the role of “tissue-of-origin” in breast cancer etiologic heterogeneity.
Understanding Tumor-associated Tissue Ecosystems
In addition to the neoplastic parenchymal cells, tumors are comprised of a complex mixture of cellular and non-cellular elements that collectively comprise the tumor microenvironment (TME). Emerging evidence indicates that the TME impacts tumor biology, including disease progression, metastasis risk, and treatment response. Nevertheless, conventional approaches for studying tumor biology have focused mostly on the neoplastic parenchyma or, more recently, the TME as somewhat disparate entities. Dr. Abubakar’s research seeks to improve understanding of tumor biology and its impact on treatment response and clinical outcomes by adopting an ecosystem approach that studies both the tumor and TME as dynamically interconnected components of the tumor-associated ecosystem. By leveraging AI, in conjunction with several laboratory staining approaches, he is performing deep phenotypic profiling of tumor tissues to uncover novel features that can be linked with epidemiological and clinical data to inform prognosis and/or treatment decision-making for screening-detectable cancers.