Phantoms: Library of Computational Human Phantoms
Three-dimensional computerized representations of the human body, referred to as computational phantoms, have been used in the fields of medical physics and radiation protection for decades to study people exposed to medical, occupational, and environmental radiation. Phantoms is a library of state-of-the-art, whole-body computational phantoms representing children and adults of different body height and weight. Each phantom contains more than 100 carefully delineated organs or tissues.
Anatomical Realism
The Phantoms library was developed from x-ray computed tomography (CT) images of patients; it is the product of a collaboration between the University of Florida and the National Cancer Institute.1,2 Best quality anatomical reference CT images were selected from an archive of 1,000+ patients. More than 100 organs and tissues were manually segmented and reviewed by practicing radiologists.
The original Phantoms library consisted of a series of reference male and female anatomies (newborn, 1-, 5-, 10-, 15-year-old, and adult) and later extended to 370 phantoms representing children and adults of both genders and various heights and weights.2 NCI researchers also added anatomical details such as lymphatic nodes3,4, substructures of the heart (e.g., atria, ventricles, arteries), and substructures of the brain (e.g., grey and white matter, cerebellum, brain stem).5
The Phantoms library was carefully adjusted to match several international reference data including reference person height and weight6, organ mass6, tissue elemental composition6,7, and dimensions of gastrointestinal structures8. The pediatric phantoms have been adopted by International Commission on Radiological Protection (ICRP) as the international reference.
State-of-the-Art and Versatile Format
The Phantoms library was developed using mesh and non-uniform rational B-spline (NURBS) surfaces, the most advanced phantom architecture to date. The phantoms can be converted into voxel format compatible with most Monte Carlo radiation transport codes such as MCNPX, MCNP6, EGSnrc, GEANT4, PHITS. Input decks for these codes describing the phantoms are also available. Some Monte Carlo codes can import the original surface geometry format.
Simulated CT images have been derived for the entire Phantoms library and are written in Digital Imaging and Communications in Medicine (DICOM) CT format. An accompanying DICOM Structure file contains the contours for more than 100 structures included in the phantom. These files have been tested for compatibility on several commercial radiotherapy treatment planning systems (TPS). After importing into a TPS, users can create a treatment plan on the phantom CT and evaluate dose to organs of interest.
How to Access This Resource
Non-Commercial Research Use
There is no charge to use these resources for non-commercial research purposes. Please submit a Software Transfer Agreement form to Dr. Choonsik Lee.
Commercial Use
Contact Dr. Kevin Chang of the NCI Technology Transfer Center to discuss the licensing process for commercial use.
For answers to questions and other support, join the NCI Hub - Group: NCI Dose Forum.